%AHuellemeier, Holly%AEren, Necla%APayne, Taylor%ASchultz, Zachary%AHeldman, Dennis%BJournal Name: Langmuir %D2022%I %JJournal Name: Langmuir %K %MOSTI ID: 10343797 %PMedium: X %TMonitoring and Characterization of Milk Fouling on Stainless Steel Using a High-Pressure High-Temperature Quartz Crystal Microbalance with Dissipation %XFouling at interfaces deteriorates the efficiency and hygiene of processes within numerous industrial sectors, including the oil and gas, biomedical device, and food industries. In the food industry, the fouling of a complex food matrix to a heated stainless steel surface reduces production efficiency by increasing heating resistance, pumping requirements, and the frequency of cleaning operations. In this work, quartz crystal microbalance with dissipation (QCM-D) was used to study the interface formed by the fouling of milk on a stainless steel surface at different flow rates and protein concentrations at high temperatures (135 °C). Subsequently, the QCM-D response was recorded during the cleaning of the foulant. Two phases of fouling were identified. During phase-1, the fouling rate was dependent on the flow rate, while the fouling rate during phase-2 was dependent on the flow rate and protein concentration. During cleaning, foulants deposited at the higher flow rate swelled more than those deposited at the lower flow rate. The composition of the fouling deposits consisted of both protein and mineral species. Two crystalline phases of calcium phosphate, β-tricalcium phosphate and hydroxyapatite, were identified at both flow rates. Stratification in topography was observed across the surface of the QCM-D sensor with a brittle and cracked structure for deposits formed at 0.2 mL/min and a smooth and close-packed structure for deposits formed at 0.1 mL/min. These stratifications in the composition and topography were correlated to differences in the reaction time and flow dynamics at different flow rates. This high-temperature application of QCM-D to complex food systems illuminates the initial interaction between proteins and minerals and a stainless steel surface, which might otherwise be undetectable in low-temperature applications of QCM-D or at larger bench and industrial scales. The methods and results presented here have implications for optimizing processing scenarios that limit fouling formation while also enhancing removal during cleaning. %0Journal Article