%ANutini, I.%AAdams, D.%AAlduino, C.%AAlfonso, K.%AAvignone, III, F.%AAzzolini, O.%ABari, G.%ABellini, F.%ABenato, G.%ABeretta, M.%ABiassoni, M.%ABranca, A.%ABrofferio, C.%ABucci, C.%ACamilleri, J.%ACaminata, A.%ACampani, A.%ACanonica, L.%ACao, X.%ACapelli, S.%ACappelli, L.%ACardani, L.%ACarniti, P.%ACasali, N.%ACeli, E.%AChiesa, D.%AClemenza, M.%ACopello, S.%ACremonesi, O.%ACreswick, R.%AD’Addabbo, A.%ADafinei, I.%ADell’Oro, S.%ADomizio, S.%ADompè, V.%AFang, D.%AFantini, G.%AFaverzani, M.%AFerri, E.%AFerroni, F.%AFiorini, E.%AFranceschi, M.%AFreedman, S.%AFu, S.%AFujikawa, B.%AGhislandi, S.%AGiachero, A.%AGironi, L.%AGiuliani, A.%AGorla, P.%AGotti, C.%AGutierrez, T.%AHan, K.%AHansen, E.%AHeeger, K.%AHuang, R.%AHuang, H.%AJohnston, J.%AKeppel, G.%AKolomensky, Yu.%AKowalski, R.%ALigi, C.%ALiu, R.%AMa, L.%AMa, Y.%AMarini, L.%AMaruyama, R.%AMayer, D.%AMei, Y.%AMoggi, N.%AMorganti, S.%ANapolitano, T.%ANastasi, M.%ANikkel, J.%ANones, C.%ANorman, E.%ANucciotti, A.%AO’Donnell, T.%AOuellet, J.%APagan, S.%APagliarone, C.%APagnanini, L.%APallavicini, M.%APattavina, L.%APavan, M.%APessina, G.%APettinacci, V.%APira, C.%APirro, S.%APozzi, S.%APrevitali, E.%APuiu, A.%AQuitadamo, S.%ARosenfeld, C.%ARusconi, C.%ASakai, M.%ASangiorgio, S.%ASchmidt, B.%AScielzo, N.%ASharma, V.%ASingh, V.%ASisti, M.%ASpeller, D.%ASurukuchi, P.%ATaffarello, L.%ATerranova, F.%ATomei, C.%AVetter, K.%AVignati, M.%AWagaarachchi, S.%AWang, B.%AWelliver, B.%AWilson, J.%AWilson, K.%AWinslow, L.%AZimmermann, S.%AZucchelli, S.%BJournal Name: Journal of Low Temperature Physics; Journal Volume: 209; Journal Issue: 5-6; Related Information: CHORUS Timestamp: 2022-11-30 05:25:45 %D2022%ISpringer Science + Business Media %JJournal Name: Journal of Low Temperature Physics; Journal Volume: 209; Journal Issue: 5-6; Related Information: CHORUS Timestamp: 2022-11-30 05:25:45 %K %MOSTI ID: 10372918 %PMedium: X %TLatest Results from the CUORE Experiment %XAbstract

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for$$0\nu \beta \beta $$0νββdecay that has been able to reach the one-tonne mass scale. The detector, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, consists of an array of 988$${\mathrm{TeO}}_{2}$$TeO2crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its$$3{\mathrm{rd}}$$3rdresult of the search for$$0\nu \beta \beta $$0νββ, corresponding to a tonne-year of$$\mathrm{TeO}_{2}$$TeO2exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of$$0\nu \beta \beta $$0νββdecay in$${}^{130}\mathrm{Te}$$130Teever conducted . We present the current status of CUORE search for$$0\nu \beta \beta $$0νββwith the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the$${}^{130}\mathrm{Te}$$130Te$$2\nu \beta \beta $$2νββdecay half-life and decay to excited states of$${}^{130}\mathrm{Xe}$$130Xe, studies performed using an exposure of 300.7 kg yr.

%0Journal Article