skip to main content

Search for: All records

Creators/Authors contains: "Aanderud, Zachary T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 24, 2023
  2. The complex relationship between ecosystem function and soil food web structure is governed by species interactions, many of which remain unmapped. Phagotrophic protists structure soil food webs by grazing the microbiome, yet their involvement in intraguild competition, susceptibility to predator diversity, and grazing preferences are only vaguely known. These species-dependent interactions are contextualized by adjacent biotic and abiotic processes, and thus obfuscated by typically high soil biodiversity. Such questions may be investigated in the McMurdo Dry Valleys (MDV) of Antarctica because the physical environment strongly filters biodiversity and simplifies the influence of abiotic factors. To detect the potential interactions in the MDV, we analyzed the co-occurrence among shotgun metagenome sequences for associations suggestive of intraguild competition, predation, and preferential grazing. In order to control for confounding abiotic drivers, we tested co-occurrence patterns against various climatic and edaphic factors. Non-random co-occurrence between phagotrophic protists and other soil fauna was biotically driven, but we found no support for competition or predation. However, protists predominately associated with Proteobacteria and avoided Actinobacteria, suggesting grazing preferences were modulated by bacterial cell-wall structure and growth rate. Our study provides a critical starting-point for mapping protist interactions in native soils and highlights key trends for future targetedmore »molecular and culture-based approaches.« less
  3. Free, publicly-accessible full text available December 19, 2022
  4. null (Ed.)
    SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of meta-information to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what meta-information should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussionsmore »on how to improve standardization of data reporting.« less