skip to main content

Search for: All records

Creators/Authors contains: "Aaron, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available May 27, 2023
  3. Grounding lines exist where land-based glacial ice flows on to a body of water. Accurately modelling grounding-line migration at the ice–ocean interface is essential for estimating future ice-sheet mass change. On the interior of ice sheets, the shores of subglacial lakes are also grounding lines. Grounding-line positions are sensitive to water volume changes such as sea-level rise or subglacial-lake drainage. Here, we introduce numerical methods for simulating grounding-line dynamics in the marine ice sheet and subglacial-lake settings. Variational inequalities arise from contact conditions that relate normal stress, water pressure and velocity at the base. Existence and uniqueness of solutions to these problems are established using a minimisation argument. A penalty method is used to replace the variational inequalities with variational equations that are solved using a finite-element method. We illustrate the grounding-line response to tidal cycles in the marine ice-sheet problem and filling–draining cycles in the subglacial-lake problem. We introduce two computational benchmarks where the known lake volume change is used to measure the accuracy of the numerical method.
  4. Global declines in biodiversity have the potential to affect ecosystem function, and vice versa, in both terrestrial and aquatic ecological realms. While many studies have considered biodiversity-ecosystem function (BEF) relationships at local scales within single realms, there is a critical need for more studies examining BEF linkages among ecological realms, across scales, and across trophic levels. We present a framework linking abiotic attributes, productivity, and biodiversity across terrestrial and inland aquatic realms. We review examples of the major ways that BEF linkages form across realms–cross-system subsidies, ecosystem engineering, and hydrology. We then formulate testable hypotheses about the relative strength of these connections across spatial scales, realms, and trophic levels. While some studies have addressed these hypotheses individually, to holistically understand and predict the impact of biodiversity loss on ecosystem function, researchers need to move beyond local and simplified systems and explicitly investigate cross-realm and trophic interactions and large-scale patterns and processes. Recent advances in computational power, data synthesis, and geographic information science can facilitate studies spanning multiple ecological realms that will lead to a more comprehensive understanding of BEF connections.
  5. Deep long-period earthquakes (DLPs) are an enigmatic type of volcanic seismicity that sometimes precedes eruptions but mostly occurs at quiescent volcanoes. These earthquakes are depleted in high-frequency content and typically occur near the base of the crust. We observed a near-periodic, long-lived sequence of more than one million DLPs in the past 19 years beneath the dormant postshield Mauna Kea volcano in Hawaiʻi. We argue that this DLP sequence was caused by repeated pressurization of volatiles exsolved through crystallization of cooling magma stalled beneath the crust. This “second boiling” of magma is a well-known process but has not previously been linked to DLP activity. Our observations suggest that, rather than portending eruptions, global DLP activity may more commonly be indicative of stagnant, cooling magma.
  6. Transplantation of human embryonic stem cell (hESC)-derived neural progenitors is a potential treatment for neurological disorders, but relatively little is known about the time course for human neuron maturation after transplantation and the emergence of morphological and electrophysiological properties. To address this gap, we transplanted hESC-derived human GABAergic interneuron progenitors into the mouse hippocampus, and then characterized their electrophysiological properties and dendritic arborizations after transplantation by means of ex vivo whole-cell patch clamp recording, followed by biocytin staining, confocal imaging and neuron reconstruction software. We asked whether particular electrophysiological and morphological properties showed maturation-dependent changes after transplantation. We also investigated whether the emergence of particular electrophysiological properties were linked to increased complexity of the dendritic arbors. Human neurons were classified into five distinct neuronal types (Type I-V), ranging from immature to mature fastspiking interneurons. Hierarchical clustering of the dendritic morphology and Sholl analyses suggested four morphologically distinct classes (Class A-D), ranging from simple/immature to highly complex. Incorporating all of our data regardless of neuronal classification, we investigated whether any electrophysiological and morphological features correlated with time post-transplantation. This analysis demonstrated that both dendritic arbors and electrophysiological properties matured after transplantation.
  7. Abstract. The fortedata R package is an open data notebook from the Forest Resilience ThresholdExperiment (FoRTE) – a modeling and manipulative field experiment that teststhe effects of disturbance severity and disturbance type on carbon cyclingdynamics in a temperate forest. Package data consist of measurements ofcarbon pools and fluxes and ancillary measurements to help analyze andinterpret carbon cycling over time. Currently the package includes data andmetadata from the first three FoRTE field seasons, serves as a central,updatable resource for the FoRTE project team, and is intended as a resourcefor external users over the course of the experiment and in perpetuity.Further, it supports all associated FoRTE publications, analyses, andmodeling efforts. This increases efficiency, consistency, compatibility, and productivity while minimizing duplicated effort and error propagation thatcan arise as a function of a large, distributed and collaborative effort.More broadly, fortedata represents an innovative, collaborative way of approachingscience that unites and expedites the delivery of complementary datasets tothe broader scientific community, increasing transparency andreproducibility of taxpayer-funded science. The fortedata package is available via GitHub: (last access: 19 February 2021), and detaileddocumentation on the access, used, and applications of fortedata are available at (last access: 19 February 2021). The first publicrelease, version 1.0.1 is also archived at (Atkins et al., 2020b). Allmore »data products are also available outside of thepackage as .csv files: (Atkins et al., 2020c).« less