skip to main content

Search for: All records

Creators/Authors contains: "Abatzoglou, John T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes—including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as “prescribed fire,” can reduce the risk of destructive fires and restore ecosystem resilience. Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (−17%), particularly during spring (−25%) and summer (−31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Extreme summer temperatures are increasingly common across the Northern Hemisphere and inflict severe socioeconomic and biological consequences. In summer 2021, the Pacific Northwest region of North America (PNW) experienced a 2-week-long extreme heatwave, which contributed to record-breaking summer temperatures. Here, we use tree-ring records to show that summer temperatures in 2021, as well as the rate of summertime warming during the last several decades, are unprecedented within the context of the last millennium for the PNW. In the absence of committed efforts to curtail anthropogenic emissions below intermediate levels (SSP2–4.5), climate model projections indicate a rapidly increasing risk of the PNW regularly experiencing 2021-like extreme summer temperatures, with a 50% chance of yearly occurrence by 2050. The 2021 summer temperatures experienced across the PNW provide a benchmark and impetus for communities in historically temperate climates to account for extreme heat-related impacts in climate change adaptation strategies.

    more » « less
  3. Changing global fire regimes including extended fire seasons due to climate change may increase the co-occurrence of high-impact fires that overwhelm national fire suppression capacities. These shifts increase the demand for international resource sharing to supplement national fire suppression efforts. In this paper, we explore the development and evaluate the effectiveness of international resource sharing arrangements of three regions: (1) The United States, Canada, and Australia (“Big Three”); (2) Europe; and (3) Southeast Asia by conducting a literature review of gray and peer- reviewed literature in combination with key informant interviews. For the “Big Three” and Europe, international resource sharing is perceived as necessary, effective, and continuously improving. Converging fire management processes and training and developing more effective administrative procedures facilitate these relationships. In Southeast Asia, political tensions and limited firefighting capacities have hampered effective cooperation. Formalized agreements of country-to-country support for fire management are nascent and evolving, and there is evidence that demand for expanding and improving these partnerships is increasing. 
    more » « less
  4. Abstract

    Lightning occurring with less than 2.5 mm of rainfall—typically referred to as ‘dry lightning’—is a major source of wildfire ignition in central and northern California. Despite being rare, dry lightning outbreaks have resulted in destructive fires in this region due to the intersection of dense, dry vegetation and a large population living adjacent to fire-prone lands. Since thunderstorms are much less common in this region relative to the interior West, the climatology and drivers of dry lightning have not been widely investigated in central and northern California. Using daily gridded lightning and precipitation observations (1987–2020) in combination with atmospheric reanalyses, we characterize the climatology of dry lightning and the associated meteorological conditions during the warm season (May–October) when wildfire risk is highest. Across the domain, nearly half (∼46%) of all cloud-to-ground lightning flashes occurred as dry lightning during the study period. We find that higher elevations (>2000 m) receive more dry lightning compared to lower elevations (<1000 m) with activity concentrated in July-August. Although local meteorological conditions show substantial spatial variation, we find regionwide enhancements in mid-tropospheric moisture and instability on dry lightning days relative to background climatology. Additionally, surface temperatures, lower-tropospheric dryness, and mid-tropospheric instability are increased across the region on dry versus wet lightning days. We also identify widespread dry lightning outbreaks in the historical record, quantify their seasonality and spatial extent, and analyze associated large-scale atmospheric patterns. Three of these four atmospheric patterns are characterized by different configurations of ridging over the continental interior and offshore troughing. Understanding the meteorology of dry lightning across this region can inform forecasting of possible wildfire ignitions and is relevant for assessing changes in dry lightning and wildfire risk in climate projections.

    more » « less
  5. Abstract

    Cloud‐to‐ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily‐accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning‐ignited wildfires (LIWs) is lacking. We combine wildfire, lightning and precipitation data sets to quantify these ignition precipitation amounts across ecoprovinces of the WUS. The median precipitation for all LIWs is 2.8 mm but varies with vegetation and fire characteristics. “Holdover” fires not detected until 2–5 days following ignition occur with significantly higher precipitation (5.1 mm) compared to fires detected promptly after ignition (2.5 mm), and with cooler and wetter environmental conditions. Further, there is substantial variation in precipitation associated with promptly‐detected (1.7–4.6 mm) and holdover (3.0–7.7 mm) fires across ecoprovinces. Consequently, the widely‐used 2.5 mm threshold does not fully capture lightning ignition risk and incorporating ecoprovince‐specific precipitation amounts would better inform WUS wildfire prediction and management.

    more » « less
  6. Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM 2.5 ) and ground-level ozone. We examine the spatiotemporal characteristics of PM 2.5 /ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM 2.5 /ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology to characterize daily weather patterns, we identify significant increases in atmospheric ridging patterns conducive to widespread PM 2.5 /ozone co-occurrences and population exposure. We further link the spatial extent of co-occurrence to the extent of extreme heat and wildfires. Our results suggest an increasing potential for co-occurring air pollution episodes in the western US with continued climate change. 
    more » « less