skip to main content


Search for: All records

Creators/Authors contains: "Abdelrahman, Mustafa K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Materials that undergo reversible changes in form typically require top‐down processing to program the microstructure of the material. As a result, it is difficult to program microscale, 3D shape‐morphing materials that undergo non‐uniaxial deformations. Here, a simple bottom‐up fabrication approach to prepare bending microactuators is described. Spontaneous self‐assembly of liquid crystal (LC) monomers with controlled chirality within 3D micromold results in a change in molecular orientation across thickness of the microstructure. As a result, heating induces bending in these microactuators. The concentration of chiral dopant is varied to adjust the chirality of the monomer mixture. Liquid crystal elastomer (LCE) microactuators doped with 0.05 wt% of chiral dopant produce needle‐shaped actuators that bend from flat to an angle of 27.2 ± 11.3° at 180 °C. Higher concentrations of chiral dopant lead to actuators with reduced bending, and lower concentrations of chiral dopant lead to actuators with poorly controlled bending. Asymmetric molecular alignment inside 3D structure is confirmed by sectioning actuators. Arrays of microactuators that all bend in the same direction can be fabricated if symmetry of geometry of the microstructure is broken. It is envisioned that the new platform to synthesize microstructures can further be applied in soft robotics and biomedical devices.

     
    more » « less
  3. null (Ed.)
    Stimuli-responsive materials that exhibit a mechanical response to specific biological conditions are of considerable interest for responsive, implantable medical devices. Herein, we report the synthesis, processing and characterization of oxidation-responsive liquid crystal elastomers that demonstrate programmable shape changes in response to reactive oxygen species. Direct ink writing (DIW) is used to fabricate Liquid Crystal Elastomers (LCEs) with programmed molecular orientation and anisotropic mechanical properties. LCE structures were immersed in different media (oxidative, basic and saline) at body temperature to measure in vitro degradation. Oxidation-sensitive hydrophobic thioether linkages transition to hydrophilic sulfoxide and sulfone groups. The introduction of these polar moieties brings about anisotropic swelling of the polymer network in an aqueous environment, inducing complex shape changes. 3D-printed uniaxial strips exhibit 8% contraction along the nematic director and 16% orthogonal expansion in oxidative media, while printed LCEs azimuthally deform into cones 19 times their original thickness. Ultimately, these LCEs degrade completely. In contrast, LCEs subjected to basic and saline solutions showed no apparent response. These oxidation-responsive LCEs with programmable shape changes may enable a wide range of applications in target specific drug delivery systems and other diagnostic and therapeutic tools. 
    more » « less
  4. Abstract

    Cracks are typically associated with the failure of materials. However, cracks can also be used to create periodic patterns on the surfaces of materials, as observed in the skin of crocodiles and elephants. In synthetic materials, surface patterns are critical to micro‐ and nanoscale fabrication processes. Here, a strategy is presented that enables freely programmable patterns of cracks on the surface of a polymer and then uses these cracks to pattern other materials. Cracks form during deposition of a thin film metal on a liquid crystal polymer network (LCN) and follow the spatially patterned molecular order of the polymer. These patterned sub‐micrometer scale cracks have an order parameter of 0.98 ± 0.02 and form readily over centimeter‐scale areas on the flexible substrates. The patterning of the LCN enables cracks that turn corners, spiral azimuthally, or radiate from a point. Conductive inks can be filled into these oriented cracks, resulting in flexible, anisotropic, and transparent conductors. This materials‐based processing approach to patterning cracks enables unprecedented control of the orientation, length, width, and depth of the cracks without costly lithography methods. This approach promises new architectures of electronics, sensors, fluidics, optics, and other devices with micro‐ and nanoscale features.

     
    more » « less