skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abdelzaher, Tarek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 4, 2026
  2. Free, publicly-accessible full text available October 6, 2026
  3. Abstract Recent advances in AI culminate a shift in science and engineering away from strong reliance on algorithmic and symbolic knowledge towards new data-driven approaches. How does the emerging intelligent data-centric world impact research on real-time and embedded computing? We argue for two effects: (1) new challenges in embedded system contexts, and (2) new opportunities for community expansion beyond the embedded domain. First,on the embedded system side, the shifting nature of computing towardsdata-centricityaffects the types of bottlenecks that arise. At training time, the bottlenecks are generallydata-related. Embedded computing relies onscarcesensor data modalities, unlike those commonly addressed in mainstream AI, necessitating solutions forefficient learningfrom scarce sensor data. At inference time, the bottlenecks areresource-related, calling forimproved resource economyandnovel scheduling policies. Further ahead, the convergence of AI around large language models (LLMs) introduces additionalmodel-relatedchallenges in embedded contexts. Second,on the domain expansion side, we argue that community expertise in handling resource bottlenecks is becoming increasingly relevant to a new domain: thecloudenvironment, driven by AI needs. The paper discusses the novel research directions that arise in the data-centric world of AI, covering data-, resource-, and model-related challenges in embedded systems as well as new opportunities in the cloud domain. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available April 28, 2026
  5. Free, publicly-accessible full text available April 28, 2026
  6. Free, publicly-accessible full text available May 19, 2026
  7. As edge computing and sensing devices continue to proliferate, distributed machine learning (ML) inference pipelines are becoming popular for enabling low-latency, real-time decision-making at scale. However, the geographically dispersed and often resource-constrained nature of edge devices makes them susceptible to various failures, such as hardware malfunctions, network disruptions, and device overloading. These edge failures can significantly affect the performance and availability of inference pipelines and the sensing-to-decision-making loops they enable. In addition, the complexity of task dependencies amplifies the difficulty of maintaining performant and reliable ML operations. To address these challenges and minimize the impact of edge failures on inference pipelines, this paper presents several fault-tolerant approaches, including sensing redundancy, structural resilience, failover replication, and pipeline reconfiguration. For each approach, we explain the key techniques and highlight their effectiveness and tradeoffs. Finally, we discuss the challenges associated with these approaches and outline future directions. 
    more » « less
  8. Many IoT applications have increasingly adopted machine learning (ML) techniques, such as classification and detection, to enhance automation and decision-making processes. With advances in hardware accelerators such as Nvidia’s Jetson embedded GPUs, the computational capabilities of end devices, particularly for ML inference workloads, have significantly improved in recent years. These advances have opened opportunities for distributing computation across the edge network, enabling optimal resource utilization and reducing request latency. Previous research has demonstrated promising results in collaborative inference, where processing units in the edge network, such as end devices and edge servers, collaboratively execute an inference request to minimize latency.This paper explores approaches for implementing collaborative inference on a single model in resource-constrained edge networks, including on-device, device-edge, and edge-edge collaboration. We present preliminary results from proof-of-concept experiments to support each case. We discuss dynamic factors that can impact the performance of these inference execution strategies, such as network variability, thermal constraints, and workload fluctuations. Finally, we outline potential directions for future research. 
    more » « less