skip to main content

Search for: All records

Creators/Authors contains: "Abdulla, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The objective of this paper is to model and characterize the percolation dynamics in road networks during a major fluvial flooding event. First, a road system is modelled as planar graph, then, using the level of co-location interdependency with flood control infrastructure as a proxy to the flood vulnerability of the road networks, it estimated the extent of disruptions each neighborhood road network experienced during a flooding event. Second, percolation mechanism in the road network during the flood is captured by assigning different removal probabilities to nodes in road network according to a Bayesian rule. Finally, temporal changes in road network robustness were obtained for random and weighted-adjusted node-removal scenarios. The proposed method was applied to road flooding in a super neighborhood in Houston during hurricane Harvey. The result shows that, network percolation due to fluvial flooding, which is modelled with the proposed Bayes rule based node-removal scheme, causes the decrease in the road network connectivity at varying rate.