skip to main content


Search for: All records

Creators/Authors contains: "Abel, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns inAAisotope fractionation in birds. We conducted a controlledCSIAfeeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individualAAcarbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐Dand Δ15NC‐D, respectively). We found that essentialAAδ13C values and sourceAAδ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessentialAAΔ13CC‐Dvalues reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe= 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Pheequation with the avian‐specificTDFGlu‐Phevalue from our experiment provided estimates that were more ecologically realistic than estimates using a singleTDFGlu‐Pheof 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use ofCSIAin nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.

     
    more » « less