skip to main content

Search for: All records

Creators/Authors contains: "Abia, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Rubidium is one of the few elements produced by the neutron capture s - and r -processes in almost equal proportions. Recently, a Rb deficiency ([Rb/Fe] < 0.0), amounting to a factor of about two with respect to the Sun, has been found in M dwarfs of near-solar metallicity. This stands in contrast to the close-to-solar [Sr, Zr/Fe] ratios derived in the same stars. This deficiency is difficult to understand from the point of view of observations and of nucleosynthesis. Aims. To test the reliability of this Rb deficiency, we study the Rb and Zr abundances in a sample of KM-type giant stars across a similar metallicity range, extracted from the AMBRE Project. Methods. We used high-resolution and high signal-to-noise spectra to derive Rb and Zr abundances in a sample of 54 bright giant stars with metallicities in the range of −0.6 ≲ [Fe/H] ≲ +0.4 dex, via spectral synthesis in both local and non-local thermodynamic equilibrium (LTE and NLTE, respectively). We also studied the impact of the Zeeman broadening in the profile of the Rb  I at λ 7800 Å line. Results. The LTE analysis also results in a Rb deficiency in giant stars, however, it is considerablymore »lower than that obtained in M dwarfs. However, once NLTE corrections are performed, the [Rb/Fe] ratios are very close to solar (average −0.01 ± 0.09 dex) in the full metallicity range studied here. This stands in contrast to the value found for M dwarfs. The [Zr/Fe] ratios derived are in excellent agreement with those obtained in previous studies in FGK dwarf stars with a similar metallicity. We investigate the effect of gravitational settling and magnetic activity as possible causes of the Rb deficiency found in M dwarfs. Although the former phenomenon has a negligible impact on the surface Rb abundance, the presence of an average magnetic field with an intensity that is typical of that observed in M dwarfs may result in systematic Rb abundance underestimations if the Zeeman broadening is not considered in the spectral synthesis. This may explain the Rb deficiency in M dwarfs, but not fully. On the other hand, the new [Rb/Fe] and [Rb/Zr] versus [Fe/H] relationships can be explained when the Rb production by rotating massive stars and low-to-intermediate mass stars (these latter also producing Zr) are considered, without the need to deviate from the standard s -process nucleosynthesis in asymptotic giant branch stars, as suggested previously.« less
  2. Context . The Gl 486 system consists of a very nearby, relatively bright, weakly active M3.5 V star at just 8 pc with a warm transiting rocky planet of about 1.3 R ⊕ and 3.0 M ⊕ . It is ideal for both transmission and emission spectroscopy and for testing interior models of telluric planets. Aims . To prepare for future studies, we aim to thoroughly characterise the planetary system with new accurate and precise data collected with state-of-the-art photometers from space and spectrometers and interferometers from the ground. Methods . We collected light curves of seven new transits observed with the CHEOPS space mission and new radial velocities obtained with MAROON-X at the 8.1 m Gemini North telescope and CARMENES at the 3.5 m Calar Alto telescope, together with previously published spectroscopic and photometric data from the two spectrographs and TESS. We also performed near-infrared interferometric observations with the CHARA Array and new photometric monitoring with a suite of smaller telescopes (AstroLAB, LCOGT, OSN, TJO). This extraordinary and rich data set was the input for our comprehensive analysis. Results . From interferometry, we measure a limb-darkened disc angular size of the star Gl 486 at θ LDD = 0.390more »± 0.018 mas. Together with a corrected Gaia EDR3 parallax, we obtain a stellar radius R * = 0.339 ± 0.015 R ⊕ . We also measure a stellar rotation period at P rot = 49.9 ± 5.5 days, an upper limit to its XUV (5-920 A) flux informed by new Hubble /STIS data, and, for the first time, a variety of element abundances (Fe, Mg, Si, V, Sr, Zr, Rb) and C/O ratio. Moreover, we imposed restrictive constraints on the presence of additional components, either stellar or sub-stellar, in the system. With the input stellar parameters and the radial-velocity and transit data, we determine the radius and mass of the planet Gl 486 b at R p = 1.343 −0.062 +0.063 R ⊕ and M p = 3.00 −0.12 +0.13 M ⊕ , with relative uncertainties of the planet radius and mass of 4.7% and 4.2%, respectively. From the planet parameters and the stellar element abundances, we infer the most probable models of planet internal structure and composition, which are consistent with a relatively small metallic core with respect to the Earth, a deep silicate mantle, and a thin volatile upper layer. With all these ingredients, we outline prospects for Gl 486 b atmospheric studies, especially with forthcoming James Webb Space Telescope ( Webb ) observations.« less
    Free, publicly-accessible full text available September 1, 2023
  3. Context. Stars evolving along the asymptotic giant branch (AGB) can become carbon rich in the final part of their evolution. The detailed description of their spectra has led to the definition of several spectral types: N, SC, J, and R. To date, differences among them have been partially established only on the basis of their chemical properties. Aims. An accurate determination of the luminosity function (LF) and kinematics together with their chemical properties is extremely important for testing the reliability of theoretical models and establishing on a solid basis the stellar population membership of the different carbon star types. Methods. Using Gaia Data Release 2 ( Gaia DR2) astrometry, we determine the LF and kinematic properties of a sample of 210 carbon stars with different spectral types in the solar neighbourhood with measured parallaxes better than 20%. Their spatial distribution and velocity components are also derived. Furthermore, the use of the infrared Wesenheit function allows us to identify the different spectral types in a Gaia -2MASS diagram. Results. We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M bol  ∼ −5.2 mag. The resulting LF, however, shows two tails at lowermore »and higher luminosities more extended than those previously found, indicating that AGB carbon stars with solar metallicity may reach M bol  ∼ −6.0 mag. This contrasts with the narrower LF derived in Galactic carbon Miras from previous studies. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found, although fainter in any case by several magnitudes than other carbon types. Part of these differences are due to systematically lower parallaxes measured by Gaia DR2 with respect to H IPPARCOS values, in particular for sources with parallax ϖ < 1 mas. The Galactic spatial distribution and velocity components of the N-, SC-, and J-type stars are very similar, while about 30% of the R-hot stars in the sample are located at distances greater than ∼500 pc from the Galactic plane, and show a significant drift with respect to the local standard of rest. Conclusions. The LF derived for N- and SC-type in the solar neighbourhood fully agrees with the expected luminosity of stars of 1.5−3 M ⊙ on the AGB. On a theoretical basis, the existence of an extended low-luminosity tail would require a contribution of extrinsic low-mass carbon stars, while the high-luminosity tail would imply that stars with mass values up to ∼5 M ⊙ may become carbon stars on the AGB. J-type stars differ significantly not only in their chemical composition with respect to the N- and SC-types, but also in their LF, which reinforces the idea that these carbon stars belong to a different type whose origin is still unknown. The derived luminosities of R-hot stars means that it is unlikely that these stars are in the red-clump, as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity values, indicate that most of the N-, SC-, and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.« less
  4. Abstract The decomposition of the Solar system abundances of heavy isotopes into their s- and r- components plays a key role in our understanding of the corresponding nuclear processes and the physics and evolution of their astrophysical sites. We present a new method for determining the s- and r- components of the Solar system abundances, fully consistent with our current understanding of stellar nucleosynthesis and galactic chemical evolution. The method is based on a study of the evolution of the solar neighborhood with a state-of-the-art 1-zone model, using recent yields of low and intermediate mass stars as well as of massive rotating stars. We compare our results with previous studies and we provide tables with the isotopic and elemental contributions of the s- and r-processes to the Solar system composition.
  5. We present new fluorine abundance measurements for a sample of carbon-rich asymptotic giant branch (AGB) stars and two other metal-poor evolved stars of Ba/CH types. The abundances are derived from IR, K -band, high-resolution spectra obtained using GEMINI-S/Phoenix and TNG/Giano-b. Our sample includes an extragalactic AGB carbon star belonging to the Sagittarius dSph galaxy. The metallicity of our stars ranges from [Fe/H] = 0.0 down to − 1.4 dex. The new measurements, together with those previously derived in similar stars, show that normal (N-type) and SC-type AGB carbon stars of near solar metallicity present similar F enhancements, discarding previous hints that suggested that SC-type stars have larger enhancements. These mild F enhancements are compatible with current chemical-evolution models pointing out that AGB stars, although relevant, are not the main sources of this element in the solar neighbourhood. Larger [F/Fe] ratios are found for lower-metallicity stars. This is confirmed by theory. We highlight a tight relation between the [F/⟨s⟩] ratio and the average s-element enhancement [⟨s⟩/Fe] for stars with [Fe/H] > −0.5, which can be explained by the current state-of-the-art low-mass AGB models assuming an extended 13 C pocket. For stars with [Fe/H] < −0.5, discrepancies between observations and model predictionsmore »still exist. We conclude that the mechanism of F production in AGB stars needs further scrutiny and that simultaneous F and s-element measurements in a larger number of metal-poor AGB stars are needed to better constrain the models.« less
  6. Abstract

    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.