skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abrahamse, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A pathway for the catalytic hydrosilylation of carbonyl substrates with M(C 6 F 5 ) 3 (M = B, Al and Ga) was calculated by DFT (B3PW91-D3) and it was shown that in the case of the Al reagent, the carbonyl substrate binds irreversibly and inhibits catalysis by generating a stable carbonyl adduct. In contrast, the reduced electrophilicity of B(C 6 F 5 ) 3 disfavors the binding of the carbonyl substrate and increases the concentration of an activated silane adduct which is the species responsible for catalytic turnover. A similar mechanism was found for both cationic and neutral Re( iii ) species. Further, it was shown by tuning the electrophilicity of the rhenium catalysts, conditions can be found that would enable the catalytic hydrosilylation of ketone and nitrile substrates that were unreactive in previously reported systems. Thus the mechanisms proposed in this work, lay the foundation for the design of new catalytic systems. 
    more » « less