skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abramovitch, David J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The spectral and transport properties of strongly correlated metals, such as SrVO3 (SVO), are widely attributed to electron-electron (𝑒−𝑒) interactions, with lattice vibrations (phonons) playing a secondary role. Here, using first-principles electron-phonon (𝑒-ph) and dynamical mean field theory calculations, we show that 𝑒-ph interactions play an essential role in SVO: they govern the electron scattering and resistivity in a wide temperature range down to 30 K, and induce an experimentally observed kink in the spectral function. In contrast, the 𝑒−𝑒 interactions control quasiparticle renormalization and low temperature transport, and enhance the 𝑒-ph coupling. We clarify the origin of the near 𝑇2 temperature dependence of the resistivity by analyzing the 𝑒−𝑒 and 𝑒-ph limited transport regimes. Our work disentangles the electronic and lattice degrees of freedom in a prototypical correlated metal, revealing the dominant role of 𝑒-ph interactions in SVO. 
    more » « less