skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abutalebi, Arsalan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interfacial engineering has been increasingly used to stabilize Pickering emulsions in commercial products and biomedical applications. Pickering emulsion stabilization is aided by interfacial viscoelasticity; however, typically the primary means of stabilization are steric hindrances between high surface concentration shells of particles around the drops. In this work, the concept of creating large interfacial viscoelastic yield stresses with low particle surface concentrations (<50%) using bidisperse charged particle systems is tested to evaluate their potential efficacy in emulsion stabilization. To explore this hypothesis, interfacial rheology and visualization experiments are conducted at o/w interfaces using positively charged amidine, negatively charged carboxylate, and negatively charged sulfate-coated latex spheres and compared to a model based on interparticle forces. Bidisperse particle systems have been observed to create more networked structures than monodisperse systems. For surface concentrations of <50%, bidisperse interfaces created measurable viscoelastic moduli ∼1 order of magnitude larger than monodisperse interfaces. Furthermore, these interfaces have measurable yield stresses on the order of 10–4 Pa·m when monodisperse systems have none. Bidispersity impacts surface viscoelasticity primarily by increasing the overall magnitude of attraction between particles at the interface and not due to changes in the microstructure. The developed model predicts the relative surface fraction that creates the largest moduli and shows good agreement with the experimental data. The results demonstrate the ability to create large viscoelastic moduli for small surface fractions of particles, which may enable stabilization using fewer particles in future applications. 
    more » « less