skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Acharya, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 28, 2025
  2. Free, publicly-accessible full text available April 30, 2025
  3. Lamberg, T ; Moss, D. (Ed.)
    Student focusing and noticing, which drive reasoning, are important but under researched aspects of student learning. Quadratic functions representations are perceptually and conceptually complex and thus, offer much for students to focus on and notice. Our study compared a teacher’s goals for student focusing and noticing during quadratic functions instruction with what students actually focused on and noticed. Qualitative analysis revealed some alignment but also informative ways that the teacher’s goals and student outcomes for focusing and noticing were misaligned. These results will further the field’s understanding of how students learn about quadratic functions and may have implications for student focusing and noticing of other mathematics topics as well. 
    more » « less
  4. Ayalon, M. ; Koichu, B. ; Leikin, R. ; Rubel, L. ; Tabach, M. (Ed.)
    The topic of study in this report is student focusing and noticing. Specifically, we examined a teacher’s goals for student focusing and noticing and the student outcomes for focusing and noticing. The mathematics context for this research was quadratic functions and covariational reasoning. Two whole-class discussion episodes were analyzed. Results showed ways that the teacher’s goals and student outcomes were aligned and three ways that they were misaligned. These results could inform how quadratic functions are taught and how teachers can improve the alignment between their goals for student focusing and noticing and student outcomes for focusing and noticing. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Abstract

    This paper describes theCombinesoftware package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombineand reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Free, publicly-accessible full text available November 1, 2025
  9. Abstract

    The CERN LHC provided proton and heavy ion collisions during its Run 2 operation period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous luminosity of 2.1× 1034cm-2s-1, twice the initial design value, at √(s)=13 TeV. The CMS experiment records a subset of the collisions for further processing as part of its online selection of data for physics analyses, using a two-level trigger system: the Level-1 trigger, implemented in custom-designed electronics, and the high-level trigger, a streamlined version of the offline reconstruction software running on a large computer farm. This paper presents the performance of the CMS high-level trigger system during LHC Run 2 for physics objects, such as leptons, jets, and missing transverse momentum, which meet the broad needs of the CMS physics program and the challenge of the evolving LHC and detector conditions. Sophisticated algorithms that were originally used in offline reconstruction were deployed online. Highlights include a machine-learning b tagging algorithm and a reconstruction algorithm for tau leptons that decay hadronically.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025