Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Human epidermal growth factor receptors (HER)—also known as EGFR or ErbB receptors—are a subfamily of receptor tyrosine kinases (RTKs) that play crucial roles in cell growth, division, and differentiation. HER4 (ErbB4) is the least studied member of this family, partly because its expression is lower in later stages of development. Recent work has suggested that HER4 can play a role in metastasis by regulating cell migration and invasiveness; however, unlike EGFR and HER2, the precise role that HER4 plays in tumorigenesis is still unresolved. Early work on HER family proteins suggested that there are direct interactions between the four members, but to date, there has been no single study of all four receptors in the same cell line with the same biophysical method. Here, we quantitatively measure the degree of association between HER4 and the other HER family proteins in live cells with a time‐resolved fluorescence technique called pulsed interleaved excitation fluorescence cross‐correlation spectroscopy (PIE‐FCCS). PIE‐FCCS is sensitive to the oligomerization state of membrane proteins in live cells, while simultaneously measuring single‐cell protein expression levels and diffusion coefficients. Our PIE‐FCCS results demonstrate that HER4 interacts directly with all HER family members in the cell plasma membrane. The interaction between HER4 and other HER family members intensified in the presence of a HER4‐specific ligand. Our work suggests that HER4 is a preferred dimerization partner for all HER family proteins, even in the absence of ligands.more » « lessFree, publicly-accessible full text available October 1, 2025
-
As a time-domain analogue of fluorescence imaging, FCS offers valuable insights into molecular dynamics, interactions, and concentrations within living cells. The primary insight generated by FCS is molecular mobility and concentration, which makes it useful for investigating molecular-scale details without the need for enrichment or separation. A specific strength of FCS is the ability to probe protein-protein interactions in live cells and several recent applications in this area are summarized. FCS is also used to investigate plasma membrane protein organization, with many applications to cell surface receptors and the mechanisms of drug binding. Finally, FCS is undergoing continual methodological innovations, such as imaging FCS, SPIM-FCS PIE-FCCS, STED-FCS, three-color FCS, and massively parallel FCS, which extend the capabilities to investigate molecular dynamics at different spatial and temporal scales. These innovations enable detailed examinations of cellular processes, including cellular transport and the spatial organization of membrane proteins.more » « lessFree, publicly-accessible full text available August 1, 2025
-
A novel wheelchair called PURE ( Personalized Unique Rolling Experience) that uses hands hands-free (HF) torso leanlean-to -steer control has been developed for manual wheelchair users (mWCUs). PURE addresses limitations of current wheelchairs, such as the in ability to use both hands for life experiences instead of propulsion. PURE uses a ball ball-based robot drivetrain to offer a compactcompact, selfself- balancing , omnidirectional mobile device. A custom sensor system convertconverts rider torso motions into direction and speed commands to control PURE, which is especially useful if a rider has minimal torso range of motion. We explored whether PURE’s HF control performed as well as a traditional joystick (JS) human human- robot interface and mWCUsmWCUs, performed as well as able able-bodied users (ABUs). 10 mWCUs and 10 ABUs were trained and tested to drive PURE through courses replicating indoor settingssettings. Each participant adjusted ride sensitivity settings for both HF and JS control . Repeated Repeated-measures MANOVA tests suggested that the number of collisions collisions, completion time time, NASA TLX scores except physical demand , and index of performance performances were similar for HF and JS control and between mWCUs and ABUs for all sections. Th is suggestsuggests that PURE is effective for controlling this new omnidirectional wheelchair by only using torso motion thus leaving both hands to be used for other tasks during propulsion propulsion.more » « lessFree, publicly-accessible full text available March 11, 2025
-
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal–regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.
-
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR’s kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR’s ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR.more » « less
-
Marshall, Wallace (Ed.)Motile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating. BB bending varies as environmental conditions change the ciliary waveform. Bending occurs where striated fibers (SFs) attach to BBs and mutants with short SFs that fail to connect to adjacent BBs exhibit abnormal BB bending, supporting a model in which SFs couple ciliary forces between BBs. Finally, loss of the BB stability protein Poc1, which helps interconnect BB triplet MTs, prevents the normal distributed BB and ciliary bending patterns. Collectively, BBs experience ciliary forces and manage mechanical coupling of these forces to their surrounding cellular architecture for normal ciliary beating.more » « less