skip to main content

Search for: All records

Creators/Authors contains: "Adams, Henry D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Increasing frequency of droughts and wildfire are sparking concerns that these compounded disturbance events are pushing forested ecosystems beyond recovery. An improved understanding of how compounded events affect tree physiology and mortality is needed given the reliance of fire management planning on accurate estimates of postfire tree mortality. In this study, we use a toxicological dose-response approach to quantify the impact of variable-intensity drought and fire on the physiology and mortality of Pinus monticola and Pseudotsuga menziesii saplings. We show that the dose-response relationship between fire intensity and mortality shifts toward increased vulnerability under drought, indicating higher mortality with increasing drought at any fire intensity. The trajectory we observed in postfire chlorophyll fluorescence, an indicator of photosynthetic efficiency and stress, was an effective early warning sign of impending tree death. Postfire mortality modeling shows that accurate mortality classification can be achieved using prefire physiology and morphology metrics combined with fire intensity. Variable importance measures indicate that physiological condition and fire intensity have greater influence on the classification accuracy than morphological metrics. The wide range in drought and fire responses observed between this study and others highlights the need for more research on compound disturbance effects.

    Study Implications: An improved understanding of how drought and fire affect tree physiology and mortality is needed by natural resource managers looking to predict postfire tree mortality. This study advances our compound disturbance understanding by subjecting conifer saplings to variable drought and fire intensities and quantifying and modeling moderate-term recovery and mortality. The results show reduced physiological recovery and amplified mortality in saplings exposed to greater drought and fire intensity. Overall, this study highlights the importance of physiological condition when modeling tree mortality and could potentially be used to inform current postfire tree mortality models.

    more » « less
    Free, publicly-accessible full text available March 22, 2025
  2. Abstract

    Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simultaneous measurements of drought, photosynthesis, growth, and carbon storage to test this. Using a field experiment with mature trees in a semi-arid woodland, we show that growth and photosynthesis slow in parallel as$${\psi }_{{pd}}$$ψpddeclines, preventing carbon storage in two species of conifer (J. monospermaandP. edulis). During experimental drought, growth and photosynthesis were frequently co-limited. Our results point to an alternative perspective on how plants use carbon that views growth and photosynthesis as independent processes both regulated by water availability.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. We investigated radial growth of post oak (Quercus stellata Wangenh.) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting, thinning, and prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. The RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring and early summer the current year, and negatively correlated to maximum daily temperatures and drought index late spring – early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, the RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, a 100 mm reduction in June precipitation decreased RWI by 7%, a 1 °C increase in previous-year September daily minimum temperature increased RWI by 3.5%, and a 1 °C increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring and summer temperatures may be reduced by a longer growing season under warmer climate scenarios. However, management did not appear to influence RWI. 
    more » « less
  4. Abstract

    Earth’s forests face grave challenges in the Anthropocene, including hotter droughts increasingly associated with widespread forest die-off events. But despite the vital importance of forests to global ecosystem services, their fates in a warming world remain highly uncertain. Lacking is quantitative determination of commonality in climate anomalies associated with pulses of tree mortality—from published, field-documented mortality events—required for understanding the role of extreme climate events in overall global tree die-off patterns. Here we established a geo-referenced global database documenting climate-induced mortality events spanning all tree-supporting biomes and continents, from 154 peer-reviewed studies since 1970. Our analysis quantifies a global “hotter-drought fingerprint” from these tree-mortality sites—effectively a hotter and drier climate signal for tree mortality—across 675 locations encompassing 1,303 plots. Frequency of these observed mortality-year climate conditions strongly increases nonlinearly under projected warming. Our database also provides initial footing for further community-developed, quantitative, ground-based monitoring of global tree mortality.

    more » « less
  5. Abstract

    Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.

    more » « less
  6. Summary

    Disruption of photosynthesis and carbon transport due to damage to the tree crown and stem cambial cells, respectively, can cause tree mortality. It has recently been proposed that fire‐induced dysfunction of xylem plays an important role in tree mortality. Here, we simultaneously tested the impact of a lethal fire dose on nonstructural carbohydrates (NSCs) and xylem hydraulics inPinus ponderosasaplings.

    Saplings were burned with a known lethal fire dose. Nonstructural carbohydrates were assessed in needles, main stems, roots and whole plants, and xylem hydraulic conductivity was measured in the main stems up to 29 d postfire.

    Photosynthesis and whole plant NSCs declined postfire. Additionally, all burned saplings showed 100% phloem/cambium necrosis, and roots of burned saplings had reduced NSCs compared to unburned and defoliated saplings. We further show that, contrary to patterns observed with NSCs, water transport was unchanged by fire and there was no evidence of xylem deformation in saplings that experienced a lethal dose of heat from fire.

    We conclude that phloem and cambium mortality, and not hydraulic failure, were probably the causes of death in these saplings. These findings advance our understanding of the physiological response to fire‐induced injuries in conifer trees.

    more » « less
  7. Summary

    Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.

    We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.

    One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).

    Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism.

    more » « less