skip to main content

Search for: All records

Creators/Authors contains: "Adams, Richard H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells. This pattern of co-option results in extensive cell-to-cell variation in venom gene expression, even between tandemly duplicated paralogs, suggesting this regulatory architecture has evolved to circumvent cellular constraints. While the exact nature of such constraints remains an open question, we propose that such regulatory heterogeneity may circumvent steric constraints on chromatin, cellular physiological constraints (e.g., endoplasmic reticulum stress or negative protein–protein interactions), or a combination of these. Regardless of the precise nature of these constraints, this example suggests that, in some cases, dynamic cellular constraints may impose previously unappreciated secondary constraints on the evolution of gene regulatory networks that favors heterogeneous expression.

    more » « less
  2. null (Ed.)
    Abstract Stochastic models of character trait evolution have become a cornerstone of evolutionary biology in an array of contexts. While probabilistic models have been used extensively for statistical inference, they have largely been ignored for the purpose of measuring distances between phylogeny-aware models. Recent contributions to the problem of phylogenetic distance computation have highlighted the importance of explicitly considering evolutionary model parameters and their impacts on molecular sequence data when quantifying dissimilarity between trees. By comparing two phylogenies in terms of their induced probability distributions that are functions of many model parameters, these distances can be more informative than traditional approaches that rely strictly on differences in topology or branch lengths alone. Currently, however, these approaches are designed for comparing models of nucleotide substitution and gene tree distributions, and thus, are unable to address other classes of traits and associated models that may be of interest to evolutionary biologists. Here we expand the principles of probabilistic phylogenetic distances to compute tree distances under models of continuous trait evolution along a phylogeny. By explicitly considering both the degree of relatedness among species and the evolutionary processes that collectively give rise to character traits, these distances provide a foundation for comparing models and their predictions, and for quantifying the impacts of assuming one phylogenetic background over another while studying the evolution of a particular trait. We demonstrate the properties of these approaches using theory, simulations, and several empirical datasets that highlight potential uses of probabilistic distances in many scenarios. We also introduce an open-source R package named PRDATR for easy application by the scientific community for computing phylogenetic distances under models of character trait evolution. 
    more » « less
  3. Ponty, Yann (Ed.)
    Abstract Summary Here, we present PhyloWGA, an open source R package for conducting phylogenetic analysis and investigation of whole genome data. Availabilityand implementation Available at Github ( Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Arkhipova, Irina (Ed.)
    Abstract Microchromosomes are common yet poorly understood components of many vertebrate genomes. Recent studies have revealed that microchromosomes contain a high density of genes and possess other distinct characteristics compared with macrochromosomes. Whether distinctive characteristics of microchromosomes extend to features of genome structure and organization, however, remains an open question. Here, we analyze Hi-C sequencing data from multiple vertebrate lineages and show that microchromosomes exhibit consistently high degrees of interchromosomal interaction (particularly with other microchromosomes), appear to be colocalized to a common central nuclear territory, and are comprised of a higher proportion of open chromatin than macrochromosomes. These findings highlight an unappreciated level of diversity in vertebrate genome structure and function, and raise important questions regarding the evolutionary origins and ramifications of microchromosomes and the genes that they house. 
    more » « less
  5. Abstract Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community. 
    more » « less