skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Adamson, Douglas H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomic force microscopy (AFM) image raw data, force spectroscopy raw data, data analysis/data plotting, and force modeling. File Formats The raw files of the AFM imaging scans of the colloidal probe surface are provided in NT-MDTs proprietary .mdt file format, which can be opened using the Gwyddion software package. Gwyddion has been released under the GNU public software license GPLv3 and can be downloaded free of charge at http://gwyddion.net/. The processed image files are included in Gwyddions .gwy file format. Force spectroscopy raw files are also provided in .mdt file format, which can be opened using NT-MDTs NOVA Px software (we used 3.2.5 rev. 10881). All the force data were converted to ASCII files (*.txt) using the NOVA Px software to also provide them in human readable form with this data set. The MATLAB codes used for force curve processing and data analysis are given as *.m files and can be opened by MATLAB (https://www.mathworks.com/products/matlab) or by a text editor. The raw and processed force curve data and other values used for data processing are stored in binary form in *.mat MATLAB data files, which can be opened by MATLAB. Organized by figure, all the raw and processed force curve data are given in Excel worksheets (*.xlsx), one per probe/substrate combination. Data (Folder Structure) The data in the dataverse is best viewed in Tree mode. Codes for Force Curve Processing The three MATLAB codes used for force curve processing are contained in this folder. The text file Read me.txt provides all the instructions to process raw force data using these three MATLAB codes. Figure 3B, 3C – AFM images The raw (.mdt) and processed (.gwy) AFM images of the colloidal probe before and after coating with graphene oxide (GO) are contained in this folder. Figure 4 – Force Curve GO The raw data of the force curve shown in Figure 4 and the substrate force curve data (used to find inverse optical lever sensitivity) are given as .mdt files and were exported as ASCII files given in the same folder. The raw and processed force curve data are also given in the variables_GO_Tip 18.mat and GO_Tip 18.xlsx files. The force curve processing codes and instructions can be found in the Codes for Force Curve Processing folder, as mentioned above. Figure 5A – Force–Displacement Curves GO, rGO1, rGO10 All the raw data of the force curves (GO, rGO1, rGO10) shown in Figure 5A and the corresponding substrate force curve data (used to find inverse optical lever sensitivity) are given as .mdt files and were exported as ASCII files given in the same folder. The raw and processed force curve data are also given in *.mat and *.xlsx files. Figure 5B, 5C – Averages of Force and Displacement for Snap-On and Pull-Off Events All the raw data of the force curves (GO, rGO1, rGO10) for all the probes and corresponding substrate force curve data are given as .mdt files and were exported as ASCII files given in this folder. The raw and processed force curve data are also provided in *.mat and *.xlsx files. The snap-on force, snap-on displacement, and pull-off displacement values were obtained from each force curve and averaged as in Code_Figure5B_5C.m. The same code was used for plotting the average values. Figure 6A – Force–Distance Curves GO, rGO1, rGO10 The raw data provided in Figure 5A – Force Displacement Curves GO, rGO1, rGO10 folder were processed into force-vs-distance curves. The raw and processed force curve data are also given in *.mat and *.xlsx files. Figure 6B – Average Snap-On and Pull-Off Distances The same raw data provided in Figure 5B, 5C – Average Snap on Force, Displacement, Pull off Displacement folder were processed into force-vs-distance curves. The raw and processed force curve data of GO, rGO1, rGO10 of all the probes are also given in *.mat and *.xlsx files. The snap-on distance and pull-off distance values were obtained from each force curve and averaged as in Code_Figure6B.m. The code used for plotting is also given in the same text file. Figure 6C – Contact Angles Advancing and receding contact angles were calculated using each processed force-vs-distance curve and averaged according to the reduction time. The obtained values and the code used to plot is given in Code_Figure6C.m. Figure 9A – Force Curve Repetition The raw data of all five force curves and the substrate force curve data are given as .mdt files and were exported as ASCII files given in the same folder. The raw and processed force curve data are also given in *.mat and *.xlsx files. Figure 9B – Repulsive Force Comparison The data of the zoomed-in region of Figure 9A was plotted as Experimental curve. Initial baseline correction was done using the MATLAB code bc.m, and the procedure is given in the Read Me.txt text file. All the raw and processed data are given in rGO10_Tip19_Trial1.xlsx and variables_rGO10_Tip 19.mat files. The MATLAB code used to model other forces and plot all the curves in Figure 9B is given in Exp_vdW_EDL.m. 
    more » « less
  2. null (Ed.)