skip to main content


Search for: All records

Creators/Authors contains: "Adelabu, Isaiah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Free, publicly-accessible full text available May 24, 2024
  3. Efficient 13C hyperpolarization of ketoisocaproate is demonstrated in natural isotopic abundance and [1-13C]enriched forms via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). Parahydrogen, as the source of nuclear spin order, and ketoisocaproate undergo simultaneous chemical exchange with an Ir-IMes-based hexacoordinate complex in CD3OD. SABRE-SHEATH enables spontaneous polarization transfer from parahydrogen-derived hydrides to the 13C nucleus of transiently bound ketoisocaproate. 13C polarization values of up to 18% are achieved at the 1-13C site in 1 min in the liquid state at 30 mM substrate concentration. The efficient polarization build-up becomes possible due to favorable relaxation dynamics. Specifically, the exponential build-up time constant (14.3 ± 0.6 s) is substantially lower than the corresponding polarization decay time constant (22.8 ± 1.2 s) at the optimum polarization transfer field (0.4 microtesla) and temperature (10 °C). The experiments with natural abundance ketoisocaproate revealed polarization level on the 13C-2 site of less than 1%—i.e., one order of magnitude lower than that of the 1-13C site—which is only partially due to more-efficient relaxation dynamics in sub-microtesla fields. We rationalize the overall much lower 13C-2 polarization efficiency in part by less favorable catalyst-binding dynamics of the C-2 site. Pilot SABRE experiments at pH 4.0 (acidified sample) versus pH 6.1 (unaltered sodium [1-13C]ketoisocaproate) reveal substantial modulation of SABRE-SHEATH processes by pH, warranting future systematic pH titration studies of ketoisocaproate, as well as other structurally similar ketocarboxylate motifs including pyruvate and alpha-ketoglutarate, with the overarching goal of maximizing 13C polarization levels in these potent molecular probes. Finally, we also report on the pilot post-mortem use of HP [1-13C]ketoisocaproate in a euthanized mouse, demonstrating that SABRE-hyperpolarized 13C contrast agents hold promise for future metabolic studies. 
    more » « less
  4. Abstract

    The feasibility of Carbon‐13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C‐13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1‐13C]acetate. Hyperpolarized ethyl [1‐13C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1‐13C]acetate and polarization transfer from nascent parahydrogen‐derived protons to the carbon‐13 nucleus via magnetic field cycling yielding C‐13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non‐cryogenic 1.4T NMR spectrometer equipped with a radio‐frequency detection coil with a quality factor (Q) of 32 without any modifications. C‐13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long‐lasting C‐13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C‐13 magnetic resonance hyperpolarization.

     
    more » « less
  5. Abstract

    The feasibility of Carbon‐13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C‐13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1‐13C]acetate. Hyperpolarized ethyl [1‐13C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1‐13C]acetate and polarization transfer from nascent parahydrogen‐derived protons to the carbon‐13 nucleus via magnetic field cycling yielding C‐13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non‐cryogenic 1.4T NMR spectrometer equipped with a radio‐frequency detection coil with a quality factor (Q) of 32 without any modifications. C‐13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long‐lasting C‐13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C‐13 magnetic resonance hyperpolarization.

     
    more » « less