Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Seismic traveltime anomalies of waves that traverse the uppermost 100–200 km of the outer core have been interpreted as evidence of reduced seismic velocities (relative to radial reference models) just below the core–mantle boundary (CMB). These studies typically investigate differential traveltimes of SmKS waves, which propagate as P waves through the shallowest outer core and reflect from the underside of the CMB m times. The use of SmKS and S(m-1)KS differential traveltimes for core imaging are often assumed to suppress contributions from earthquake location errors and unknown and unmodelled seismic velocity heterogeneity in the mantle. The goal of this study is to understand the extent to which differential SmKS traveltimes are, in fact, affected by anomalous mantle structure, potentially including both velocity heterogeneity and anisotropy. Velocity variations affect not only a wave's traveltime, but also the path of a wave, which can be observed in deviations of the wave's incoming direction. Since radial velocity variations in the outer core will only minimally affect the wave path, in contrast to other potential effects, measuring the incoming direction of SmKS waves provides an additional diagnostic as to the origin of traveltime anomalies. Here we use arrays of seismometers to measure traveltime and direction anomalies of SmKS waves that sample the uppermost outer core. We form subarrays of EarthScope's regional Transportable Array stations, thus measuring local variations in traveltime and direction. We observe systematic lateral variations in both traveltime and incoming wave direction, which cannot be explained by changes to the radial seismic velocity profile of the outer core. Moreover, we find a correlation between incoming wave direction and traveltime anomaly, suggesting that observed traveltime anomalies may be caused, at least in part, by changes to the wave path and not solely by perturbations in outer core velocity. Modelling of 1-D ray and 3-D wave propagation in global 3-D tomographic models of mantle velocity anomalies match the trend of the observed traveltime anomalies. Overall, we demonstrate that observed SmKS traveltime anomalies may have a significant contribution from 3-D mantle structure, and not solely from outer core structure.more » « less
-
Abstract Shear‐wave splitting measurements are commonly used to resolve seismic anisotropy in both the upper and lowermost mantle. Typically, such techniques are applied to SmKS phases that have reflected (m‐1) times off the underside of the core‐mantle boundary before being recorded. Practical constraints for shear‐wave splitting studies include the limited number of suitable phases as well as the large fraction of available data discarded because of poor signal‐to‐noise ratios (SNRs) or large measurement uncertainties. Array techniques such as beamforming are commonly used in observational seismology to enhance SNRs, but have not been applied before to improve SmKS signal strength and coherency for shear wave splitting studies. Here, we investigate how a beamforming methodology, based on slowness and backazimuth vespagrams to determine the most coherent incoming wave direction, can improve shear‐wave splitting measurement confidence intervals. Through the analysis of real and synthetic seismograms, we show that (a) the splitting measurements obtained from the beamformed seismograms (beams) reflect an average of the single‐station splitting parameters that contribute to the beam; (b) the beams have (on average) more than twice as large SNRs than the single‐station seismograms that contribute to the beam; (c) the increased SNRs allow the reliable measurement of shear wave splitting parameters from beams down to average single‐station SNRs of 1.3. Beamforming may thus be helpful to more reliably measure splitting due to upper mantle anisotropy. Moreover, we show that beamforming holds potential to greatly improve detection of lowermost mantle anisotropy by demonstrating differential SKS–SKKS splitting analysis using beamformed USArray data.more » « less