skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Adeyemi, Adedoyin N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Noncentrosymmetric (NCS) silicon phosphides have recently shown promise as nonlinear optical materials due to the balance of strong second harmonic generation (SHG) activity and large laser damage threshold (LDT) values. While arsenides of electropositive metals, such as Ba, Mg, Zn, and Cd were explored, no NLO properties for transition metal tetrel arsenides have yet been reported. IrSi 3 As 3 is a novel compound, isostructural to IrSi 3 P 3 , which allows a direct investigation on the impact of the heavier pnictogen on structural and optical properties. The direct bandgap is reduced from 1.8 eV for IrSi 3 P 3 to 1.55 eV for IrSi 3 As 3 . Unlike many NLO chalcogenides, IrSi 3 As 3 has a small bandgap without compromising the balance between SHG signal and high LDT values. IrSi 3 As 3 was found to outperform both its phosphide analogue IrSi 3 P 3 , as well as the state-of-the-art infrared SHG standard AgGaS 2 (AGS) in SHG activity and the LDT. 
    more » « less
  2. The solvothermal synthetic exploration of the Bi–S–halogen phase space resulted in the synthesis of two bismuth sulfohalides with common structural motifs. Bi 13 S 18 I 2 was confirmed to have the previously reported composition and crystal structure. In contrast, the bromide analogue was shown to have a formula of neither Bi 19 S 27 Br 3 nor Bi 13 S 18 Br 2 , in contrast to the previous reports. The composition, refined from single crystal X-ray diffraction and confirmed by elemental analysis, high-resolution powder X-ray diffraction, and total scattering, is close to Bi 13 S 17 Br 3 due to the partial S/Br substitution in the framework. Bi 13 S 18 I 2 and Bi 13 S 17 Br 3 are n -type semiconductors with similar optical bandgaps of ∼0.9 eV but different charge and heat transport properties. Due to the framework S/Br disorder, Bi 13 S 17 Br 3 exhibits lower thermal and electrical conductivities than the iodine-containing analogue. The high Seebeck coefficients and ultralow thermal conductivities indicate that the reported bismuth sulfohalides are promising platforms to develop novel thermoelectric materials. 
    more » « less
  3. The intermetallic compound LiMnBi was synthesized by the two-step solid-state reaction from the elements. A synthesis temperature of 850 K was selected based on in situ high-temperature powder X-ray diffraction data. LiMnBi crystalizes in the layered-like PbClF structure type (a = 4.3131(7) Å, c = 7.096(1) Å at 100 K, P4/nmm space group, Z = 2). The LiMnBi structure is built of alternating [MnBi] and Li layers, as determined from single-crystal X-ray diffraction data. Magnetic property measurements and solid-state 7Li nuclear magnetic resonance data collected for polycrystalline LiMnBi samples indicate the long-range antiferromagnetic ordering of the Mn sublattice at ∼340 K, with no superconductivity detected down to 5 K. LiMnBi is air- and water-sensitive. Under aerobic conditions, Li can be extracted from the LiMnBi structure to form Li2O/LiOH and MnBi (NiAs structure type, P63/mmc). The obtained MnBi polymorph was previously reported to be one of the strongest rare-earth-free ferromagnets, yet its bulk synthesis in powder form is cumbersome. The proposed magneto-structural transformation from ternary LiMnBi to ferromagnetic MnBi involves condensation of the MnBi4 tetrahedra upon Li deintercalation and is exclusive to LiMnBi. In contrast, ferromagnetic MnBi cannot be obtained from either isostructural NaMnBi and KMnBi or from the structurally related CaMn2Bi2. Such a distinctive transformation in the case of LiMnBi is presumed to be due to its fitting reactivity to yield MnBi and a favorable interlayer distance between [MnBi] layers, while the interlayer distance in NaMnBi and KMnBi structural analogues is unfavorably long. The studies of delithiation from layered-like LiMnBi under different chemical environments indicate that the yield of MnBi depends on the type of solvent used and the kinetics of the reaction. A slow rate and mild reaction media lead to a high fraction of the MnBi product. The saturation magnetization of the “as-prepared” MnBi is ∼50% of the expected value of 81.3 emu/g. Overall, this study adds a missing member to the family of ternary pnictides and illustrates how soft-chemistry methods can be used to obtain “difficult-to-synthesize” compounds. 
    more » « less
  4. null (Ed.)