skip to main content


Search for: All records

Creators/Authors contains: "Adjouadi, Malek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. resented here is a model objectivizing real estate prices so that prices across time could be compared to understand historical price trends and also to assist in a property evaluation or appraisal, as well as for the analysis of comparables in estimating a reasonable offer for a property on the market. Given a timespan of interest, a locale (e.g., a particular zipcode, a city, a county, a state), a category of properties of interest (e.g., condos), an objective historical trend in values can be computed by first evaluating the ratios between the transactions’ realized prices and objective governmental assessment of the properties at some fixed point of time; then, for each period (a month) averaging the ratios of all transaction in that period; then, comparing said averages (or medians) between different periods. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Geographic datasets are usually accompanied by spatial non-stationarity – a phenomenon that the relationship between features varies across space. Naturally, nonstationarity can be interpreted as the underlying rule that decides how data are generated and alters over space. Therefore, traditional machine learning algorithms are not suitable for handling non-stationary geographic datasets, as they only render a single global model. To solve this problem, researchers often adopt the multiple-local-model approach, which uses different models to account for different sub-regions of space. This approach has been proven efficient but not optimal, as it is inherently difficult to decide the size of subregions. Additionally, the fact that local models are only trained on a subset of data also limits their potential. This paper proposes an entirely different strategy that interprets nonstationarity as a lack of data and addresses it by introducing latent variables to the original dataset. Backpropagation is then used to find the best values for these latent variables. Experiments show that this method is at least as efficient as multiple-local-model-based approaches and has even greater potential. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Abstract

    Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.

     
    more » « less
  5. In this paper, we present the FIU MARG Dataset (FIUMARGDB) of signals from the tri-axial accelerometer, gyroscope, and magnetometer contained in a low-cost miniature magnetic–angular rate–gravity (MARG) sensor module (also known as magnetic inertial measurement unit, MIMU) for the evaluation of MARG orientation estimation algorithms. The dataset contains 30 files resulting from different volunteer subjects executing manipulations of the MARG in areas with and without magnetic distortion. Each file also contains reference (“ground truth”) MARG orientations (as quaternions) determined by an optical motion capture system during the recording of the MARG signals. The creation of FIUMARGDB responds to the increasing need for the objective comparison of the performance of MARG orientation estimation algorithms, using the same inputs (accelerometer, gyroscope, and magnetometer signals) recorded under varied circumstances, as MARG modules hold great promise for human motion tracking applications. This dataset specifically addresses the need to study and manage the degradation of orientation estimates that occur when MARGs operate in regions with known magnetic field distortions. To our knowledge, no other dataset with these characteristics is currently available. FIUMARGDB can be accessed through the URL indicated in the conclusions section. It is our hope that the availability of this dataset will lead to the development of orientation estimation algorithms that are more resilient to magnetic distortions, for the benefit of fields as diverse as human–computer interaction, kinesiology, motor rehabilitation, etc. 
    more » « less
  6. Prodromal detection of Alzheimer’s Disease(AD) is a substantial challenge in the research community. Among the tools used in AD diagnosis, cognitive exams are standard in most procedures. However, the barrage of cognitive examinations is both time and resource consuming. With the use of Machine Learning, Feature Elimination (FE) can be combined with classification algorithms to determine which cognitive exams are best suited for diagnosis. Using the results of FE, it can be determined if subsections of different composite scores can be combined to create a new enhanced and exhaustive exam. This paper implements a Recursive Feature Elimination with Cross Validation (RFECV) machine learning algorithm to determine which cognitive exams perform best for AD classification tasks. Out of 119 features, an average of 16 features were selected as optimal. These optimal features average 75% Accuracy, 70% Precision, and 75% Recall and an F1 Weighted score of 71% in classification. 
    more » « less
    Free, publicly-accessible full text available July 15, 2024
  7. Abstract Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  8. Objective: The interaction of ethnicity, progression of cognitive impairment, and neuroimaging biomarkers of Alzheimer’s Disease remains unclear. We investigated the stability in cognitive status classification (cognitively normal [CN] and mild cognitive impairment [MCI]) of 209 participants (124 Hispanics/Latinos and 85 European Americans). Methods: Biomarkers (structural MRI and amyloid PET scans) were compared between Hispanic/Latino and European American individuals who presented a change in cognitive diagnosis during the second or third follow-up and those who remained stable over time. Results: There were no significant differences in biomarkers between ethnic groups in any of the diagnostic categories. The frequency of CN and MCI participants who were progressors (progressed to a more severe cognitive diagnosis at follow-up) and non-progressors (either stable through follow-ups or unstable [progressed but later reverted to a diagnosis of CN]) did not significantly differ across ethnic groups. Progressors had greater atrophy in the hippocampus (HP) and entorhinal cortex (ERC) at baseline compared to unstable non-progressors (reverters) for both ethnic groups, and more significant ERC atrophy was observed among progressors of the Hispanic/Latino group. For European Americans diagnosed with MCI, there were 60% more progressors than reverters (reverted from MCI to CN), while among Hispanics/Latinos with MCI, there were 7% more reverters than progressors. Binomial logistic regressions predicting progression, including brain biomarkers, MMSE, and ethnicity, demonstrated that only MMSE was a predictor for CN participants at baseline. However, for MCI participants at baseline, HP atrophy, ERC atrophy, and MMSE predicted progression. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024