skip to main content

Search for: All records

Creators/Authors contains: "Adkins, Jess F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3production is higher than the sinking flux of CaCO3at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3cycle and its impact on atmospheric CO2will largely depend on how the poorly-understood processes that determine whether CaCO3is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification.

    more » « less
  2. A compilation of radiocarbon measurements is used to characterize deep-sea overturning since the last ice age. 
    more » « less
  3. Abstract

    The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNdvalues of ~−4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNdof ~−7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.

    more » « less
  4. Abstract. We introduce a time-dependent, one-dimensional model ofearly diagenesis that we term RADI, an acronym accounting for the mainprocesses included in the model: chemical reactions, advection, molecularand bio-diffusion, and bio-irrigation. RADI is targeted for study ofdeep-sea sediments, in particular those containing calcium carbonates(CaCO3). RADI combines CaCO3 dissolution driven by organic matterdegradation with a diffusive boundary layer and integrates state-of-the-artparameterizations of CaCO3 dissolution kinetics in seawater, thusserving as a link between mechanistic surface reaction modeling andglobal-scale biogeochemical models. RADI also includes CaCO3precipitation, providing a continuum between CaCO3 dissolution andprecipitation. RADI integrates components rather than individual chemicalspecies for accessibility and is straightforward to compare againstmeasurements. RADI is the first diagenetic model implemented in Julia, ahigh-performance programming language that is free and open source, and itis also available in MATLAB/GNU Octave. Here, we first describe thescientific background behind RADI and its implementations. Following this, we evaluateits performance in three selected locations and explore other potentialapplications, such as the influence of tides and seasonality on earlydiagenesis in the deep ocean. RADI is a powerful tool to study thetime-transient and steady-state response of the sedimentary system toenvironmental perturbation, such as deep-sea mining, deoxygenation, oracidification events. 
    more » « less
  5. An integrated model illuminates the fate of marine carbonate biomineralizers in past, present, and future mass extinctions. 
    more » « less
  6. Abstract

    The isotopic composition of dissolved oxygen offers a family of potentially unique tracers of respiration and transport in the subsurface ocean. Uncertainties in transport parameters and isotopic fractionation factors, however, have limited the strength of the constraints offered by18O/16O and17O/16O ratios in dissolved oxygen. To improve our understanding of oxygen cycling in the ocean's interior, we investigated the systematics of oxygen isotopologues in the subsurface Pacific using new data and a 2‐D isotopologue‐enabled isopycnal reaction‐transport model. We measured18O/16O and17O/16O ratios, as well as the “clumped”18O18O isotopologue in the northeast Pacific, and compared the results to previously published data. We find evidence that oxygen consumption in the northeast Pacific follows different mass‐dependent fractionation exponents from those typically used in oceanographic studies. These fractionation factors imply that an elevated proportion of17O compared to18O in dissolved oxygen—that is, its triple‐oxygen isotope composition—may not uniquely reflect only gross primary productivity and mixing. For all oxygen isotopologues, transport, respiration, and photosynthesis comprise important parts of their respective budgets. Mechanisms of oxygen removal in the subsurface ocean are discussed.

    more » « less