Computer science education has been making dramatic increases in recent years. Across the US, different states are advancing computer science education through different policies. However, as a state makes choices to advance computer science education, it is critical to consider how these policies will broaden participation in computing (BPC). Many have indicated that only white and Asian males (who make up 30% of our population) currently have the opportunity/privilege to engage in computer science education. Therefore, as we implement state-level computer science education reform, it is critical that BPC remains as our guiding principle. Expanding Computing Education Pathways (ECEP) was created as an NSF national alliance to support state-level educational reform with regards to computer science. Over the past 6 years, this alliance of 22 states and Puerto Rico have worked together to share policies to advance BPC in each state. Through these experiences, ECEP has proposed that state change related to CS educational reform follows five stages: (1) Find your leader(s) and change agents; (2) understand the CS education landscape and identify the key issues/policies; (3) gather and organize your allies to establish goals and develop strategic plans and; (4) get initial funding to support change and; (5) building and utilizing data infrastructure that informs strategic BPC efforts. This study examined the ECEP alliance and the five-stage model through the 25,000+ documents and data sources over the past decade, specifically investigating how these five stages impacted states’ overall BPC efforts. Results indicated that these 5 stages seemed to support states’ BPC efforts.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adrion, Rick (2)
-
Ericson, Barbara (2)
-
Fall, Renee (2)
-
Guzdial, Mark (2)
-
Abramenka, Victoria (1)
-
Biggers, Maureen (1)
-
Childs, Joshua (1)
-
DeLyser, Leigh Ann (1)
-
Dunton, Sarah (1)
-
Fletcher, Carol (1)
-
Goodhue, John (1)
-
Jeon, Minji (1)
-
Ottenbreit-Leftwich, Anne T. (1)
-
Peterfreund, Alan (1)
-
Richardson, Debra (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Adrion, Rick ; Fall, Renee ; Ericson, Barbara ; Guzdial, Mark ( , Communications of the ACM)