Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The collisionless nature of planetary magnetospheres means that electromagnetic forces are fundamental in controlling the flow of energy and momentum through these systems. We use Pioneer Venus Orbiter (PVO) observations to demonstrate that the magnetic pumping process can be active at Venus, in analogy to its recent discovery at Mars. The presented case study demonstrates the framework for how the process can work at Venus, and the results of a statistical analysis show that the ambient plasma conditions support the process being active. Magnetic pumping enables low frequency magnetosonic waves to heat ambient ionospheric electrons and provides a mechanism that couples the solar wind to the Venusian ionosphere. This is the first time the magnetic pumping process has been discussed at Venus.more » « lessFree, publicly-accessible full text available June 28, 2025
-
Context.The evolution of the solar wind electron distribution function with heliocentric distance exhibits different features that are still unexplained, in particular, the fast decrease in the electron heat flux and the increase in the Strahl pitch angle width. Wave-particle interactions between electrons and whistler waves are often proposed to explain these phenomena. Aims.We aim to quantify the effect of whistler waves on suprathermal electrons as a function of heliocentric distance. Methods.We first performed a statistical analysis of whistler waves (occurrence and properties) observed by Solar Orbiter and Parker Solar Probe between 0.2 and 1 AU. The wave characteristics were then used to compute the diffusion coefficients for solar wind suprathermal electrons in the framework of quasi-linear theory. These coefficients were integrated to deduce the overall effect of whistler waves on electrons along their propagation. Results.About 110 000 whistler wave packets were detected and characterized in the plasma frame, including their direction of propagation with respect to the background magnetic field and their radial direction of propagation. Most waves are aligned with the magnetic field and only ∼0.5% of them have a propagation angle greater than 45°. Beyond 0.3 AU, it is almost exclusively quasi-parallel waves propagating anti-sunward (some of them are found sunward but are within switchbacks with a change of sign of the radial component of the background magnetic) that are observed. Thus, these waves are found to be Strahl-aligned and not counter-streaming. At 0.2 AU, we find both Strahl-aligned and counter-streaming quasi-parallel whistler waves. Conclusions.Beyond 0.3 AU, the integrated diffusion coefficients show that the observed waves are sufficient to explain the measured Strahl pitch angle evolution and effective in isotropizing the halo. Strahl diffusion is mainly attributed to whistler waves with a propagation angle ofθ ∈ [15.45]°, although their origin has not yet been fully determined. Near 0.2 AU, counter-streaming whistler waves are able to diffuse the Strahl electrons more efficiently than the Strahl-aligned waves by two orders of magnitude.more » « less
-
The low-electron flux variability (increase/decrease) in the Earth’s radiation belts could cause low-energy Electron Precipitation (EP) to the atmosphere over auroral and South American Magnetic Anomaly (SAMA) regions. This EP into the atmosphere can cause an extra upper atmosphere’s ionization, forming the auroral-type sporadic E layers (Esa) over these regions. The dynamic mechanisms responsible for developing this Esa layer over the auroral region have been established in the literature since the 1960s. In contrast, there are several open questions over the SAMA region, principally due to the absence (or contamination) of the inner radiation belt and EP parameter measurements over this region. Generally, the Esa layer is detected under the influence of geomagnetic storms during the recovery phase, associated with solar wind structures, in which the time duration over the auroral region is considerably greater than the time duration over the SAMA region. The inner radiation belt’s dynamic is investigated during a High-speed Solar wind Stream (September 24-25, 2017), and the hiss wave-particle interactions are the main dynamic mechanism able to trigger the Esa layer’s generation outside the auroral oval. This result is compared with the dynamic mechanisms that can cause particle precipitation in the auroral region, showing that each region presents different physical mechanisms. Additionally, the difference between the time duration of the hiss wave activities and the Esa layers is discussed, highlighting other ingredients mandatory to generate the Esa layer in the SAMA region.more » « less
-
Context.Whistler waves are electromagnetic waves produced by electron-driven instabilities, which in turn can reshape the electron distributions via wave–particle interactions. In the solar wind they are one of the main candidates for explaining the scattering of the strahl electron population into the halo at increasing radial distances from the Sun and for subsequently regulating the solar wind heat flux. However, it is unclear what type of instability dominates to drive whistler waves in the solar wind. Aims.Our goal is to study whistler wave parameters in the young solar wind sampled by Parker Solar Probe (PSP). The wave normal angle (WNA) in particular is a key parameter to discriminate between the generation mechanisms of these waves. Methods.We analyzed the cross-spectral matrices of magnetic field fluctuations measured by the search-coil magnetometer (SCM) and processed by the Digital Fields Board (DFB) from the FIELDS suite during PSP’s first perihelion. Results.Among the 2701 wave packets detected in the cross-spectra, namely individual bins in time and frequency, most were quasi-parallel to the background magnetic field; however, a significant part (3%) of the observed waves had oblique (> 45°) WNA. The validation analysis conducted with the time series waveforms reveal that this percentage is a lower limit. Moreover, we find that about 64% of the whistler waves detected in the spectra are associated with at least one magnetic dip. Conclusions.We conclude that magnetic dips provide favorable conditions for the generation of whistler waves. We hypothesize that the whistlers detected in magnetic dips are locally generated by the thermal anisotropy as quasi-parallel and can gain obliqueness during their propagation. We finally discuss the implications of our results for the scattering of the strahl in the solar wind.more » « less
-
Abstract Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.05 and 0.20fce(tens of hertz up to ∼300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow, the waves experience significant Doppler downshift and upshift of wave frequency in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 2 nT, where such values represent up to 10% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves.more » « less
-
Abstract A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field—switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of these structures. The role of FR merging in controlling the structure of SBs in the solar wind is explored through direct observations, analytic analysis, and numerical simulations. Analytic analysis reveals key features of the structure of FRs and their scaling with heliocentric distance R, which are consistent with observations and demonstrate the critical role of merging in controlling the structure of SBs. FR merging is shown to energetically favor reductions in the strength of the wrapping magnetic field and the elongation of SBs. A further consequence is the resulting dominance of the axial magnetic field within SBs that leads to the observed characteristic sharp rotation of the magnetic field into the axial direction at the SB boundary. Finally, the radial scaling of the SB area in the FR model suggests that the observational probability of SB identification should be insensitive to R , which is consistent with the most recent statistical analysis of SB observations from PSP.more » « less
-
Abstract Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called “plasma emission” framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f pe and/or its harmonic 2 f pe . However, the details of the physics of mode conversion are unclear, and so far the magnetic component of the plasma waves has not been definitively measured. Several spacecraft have measured quasi-monochromatic Langmuir or slow extraordinary modes (sometimes called z -modes) in the solar wind. These coherent waves are expected to have a weak magnetic component, which has never been observed in an unambiguous way. Here we report on the direct measurement of the magnetic signature of these waves using the Search Coil Magnetometer sensor of the Parker Solar Probe/FIELDS instrument. Using simulations of wave propagation in an inhomogeneous plasma, we show that the appearance of the magnetic component of the slow extraordinary mode is highly influenced by the presence of density inhomogeneities that occasionally cause the refractive index to drop to low values where the wave has strong electromagnetic properties.more » « less
-
The dynamics of the electron population in the Earth’s radiation belts affect the upper atmosphere’s ionization level through the low-energy Electron Precipitation (EP). The impact of low-energy EP on the high-latitude ionosphere has been well explained since the 1960’s decade. Conversely, it is still not well understood for the region of the South American Magnetic Anomaly (SAMA). In this study, we present the results of analysis of the strong geomagnetic storm associated with the Interplanetary Coronal Mass Ejection (May 27-28, 2017). The atypical auroral sporadic E layers (Es a ) over SAMA are observed in concomitance with the hiss and magnetosonic wave activities in the inner radiation belt. The wave-particle interaction effects have been estimated, and the dynamic mechanisms that caused the low-energy EP over SAMA were investigated. We suggested that the enhancement in pitch angle scattering driven by hiss waves result in the low-energy EP (≥10 keV) into the atmosphere over SAMA. The impact of these precipitations on the ionization rate at the altitude range from 100 to 120 km can generate the Es a layer in this peculiar region. In contrast, we suggested that the low-energy EP (≤1 keV) causes the maximum ionization rate close to 150 km altitude, contributing to the Es a layer occurrence in these altitudes.more » « less