Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)Let P be a set of m points in ℝ², let Σ be a set of n semi-algebraic sets of constant complexity in ℝ², let (S,+) be a semigroup, and let w: P → S be a weight function on the points of P. We describe a randomized algorithm for computing w(P∩σ) for every σ ∈ Σ in overall expected time O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n), where s > 0 is a constant that bounds the maximum complexity of the regions of Σ, and where the O^*(⋅) notation hides subpolynomial factors. For s ≥ 3, surprisingly, this bound is smaller than the best-known bound for answering m such queries in an on-line manner. The latter takes O^*(m^{s/(2s-1)}n^{(2s-2)/(2s-1)} + m + n) time. Let Φ: Σ × P → {0,1} be the Boolean predicate (of constant complexity) such that Φ(σ,p) = 1 if p ∈ σ and 0 otherwise, and let Σ_Φ P = {(σ,p) ∈ Σ× P ∣ Φ(σ,p) = 1}. Our algorithm actually computes a partition ℬ_Φ of Σ_Φ P into bipartite cliques (bicliques) of size (i.e., sum of the sizes of the vertex sets of its bicliques) O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n). It is straightforward to compute w(P∩σ) for all σ ∈ Σ from ℬ_Φ. Similarly, if η: Σ → S is a weight function on the regions of Σ, ∑_{σ ∈ Σ: p ∈ σ} η(σ), for every point p ∈ P, can be computed from ℬ_Φ in a straightforward manner. We also mention a few other applications of computing ℬ_Φ.more » « less
-
Chambers, Erin W; Gudmundsson, Joachim (Ed.)Let ℬ be a set of n unit balls in ℝ³. We present a linear-size data structure for storing ℬ that can determine in O^*(n^{1/2}) time whether a query line intersects any ball of ℬ and report all k such balls in additional O(k) time. The data structure can be constructed in O(n log n) time. (The O^*(⋅) notation hides subpolynomial factors, e.g., of the form O(n^ε), for arbitrarily small ε > 0, and their coefficients which depend on ε.) We also consider the dual problem: Let ℒ be a set of n lines in ℝ³. We preprocess ℒ, in O^*(n²) time, into a data structure of size O^*(n²) that can determine in O^*(1) time whether a query unit ball intersects any line of ℒ, or report all k such lines in additional O(k) time.more » « less
-
We present efficient dynamic data structures for maintaining the union of unit discs and the lower envelope of pseudo-lines in the plane. More precisely, we present three main results in this paper: (i) We present a linear-size data structure to maintain the union of a set of unit discs under insertions. It can insert a disc and update the union in O (( k +1)log 2 n ) time, where n is the current number of unit discs and k is the combinatorial complexity of the structural change in the union due to the insertion of the new disc. It can also compute, within the same time bound, the area of the union after the insertion of each disc. (ii) We propose a linear-size data structure for maintaining the lower envelope of a set of x -monotone pseudo-lines. It can handle insertion/deletion of a pseudo-line in O (log 2 n ) time; for a query point x 0 ∈ ℝ, it can report, in O (log n ) time, the point on the lower envelope with x -coordinate x 0 ; and for a query point q ∈ ℝ 2 , it can return all k pseudo-lines lying below q in time O (log n + k log 2 n ). (iii) We present a linear-size data structure for storing a set of circular arcs of unit radius (not necessarily on the boundary of the union of the corresponding discs), so that for a query unit disc D , all input arcs intersecting D can be reported in O ( n 1/2+ɛ + k ) time, where k is the output size and ɛ > 0 is an arbitrarily small constant. A unit-circle arc can be inserted or deleted in O (log 2 n ) time.more » « less
-
We model the societal task of redistricting political districts as a partitioning problem: Given a set of n points in the plane, each belonging to one of two parties, and a parameter k, our goal is to compute a partition P of the plane into regions so that each region contains roughly s = n/k points. P should satisfy a notion of "local" fairness, which is related to the notion of core, a well-studied concept in cooperative game theory. A region is associated with the majority party in that region, and a point is unhappy in P if it belongs to the minority party. A group D of roughly s contiguous points is called a deviating group with respect to P if majority of points in D are unhappy in P. The partition P is locally fair if there is no deviating group with respect to P.This paper focuses on a restricted case when points lie in 1D. The problem is non-trivial even in this case. We consider both adversarial and "beyond worst-case" settings for this problem. For the former, we characterize the input parameters for which a locally fair partition always exists; we also show that a locally fair partition may not exist for certain parameters. We then consider input models where there are "runs" of red and blue points. For such clustered inputs, we show that a locally fair partition may not exist for certain values of s, but an approximate locally fair partition exists if we allow some regions to have smaller sizes. We finally present a polynomial-time algorithm for computing a locally fair partition if one exists.more » « less
-
Czumaj, Artur; Xin, Qin (Ed.)