Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wave propagation in the heart tube is key to establishing an early pumping mechanism, as explained by impedance pump theory in zebrafish. Though initially proposed for embryonic blood circulation, the role of impedance-like behaviour in the mature cardiovascular system remains unclear. This study focuses on the understudied physiological mechanism of longitudinal displacement in the adult aorta caused by the long-axis motion of the heart. Using magnetic resonance imaging on 159 individuals, we compared aortic displacement profiles between a control group and those with heart failure, revealing a significant difference in aortic stretch between the two groups. Building on this clinical evidence, we conductedin vitroexperiments to isolate the effects of longitudinal aortic wave pumping by eliminating the pumping action of the heart. We identified three biomechanical properties of stretch-related longitudinal wave pumping that exhibit characteristics like impedance pump: (i) a nonlinear flow–frequency relationship, (ii) bidirectional flow, and (iii) the potential for both positive and negative flow at a fixed frequency, contingent upon the aorta’s wave speed dictating the wave state. Our results demonstrate for the first time that this mechanism generates a significant flow, potentially providing a supplementary pumping mechanism for the heart.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We investigated the impact of major aging mechanisms of the arterial system and cardiac function on brain hemodynamics. Our findings suggest that aging has a significant impact on heart-aorta-brain coupling through changes in both arterial stiffening and left ventricle (LV) contractility. Understanding the underlying physical mechanisms involved here can potentially be a key step for developing more effective therapeutic strategies that can mitigate the contributions of abnormal LV-arterial coupling toward neurodegenerative diseases and dementia.more » « less
An official website of the United States government
