skip to main content


Search for: All records

Creators/Authors contains: "Agosta, Salvatore J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non‐native forest pestLymantria dispar dispar(L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate‐related performance among populations.

     
    more » « less
  2. Abstract

    Rodents regularly rely on emerged epicotyls to locate and remove cotyledons still containing valuable nutrients. However, the extent to which acorn characteristics influence tolerance to post‐germination predation has received little attention.

    Here, we investigated the impact of cotyledon removal following epicotyl emergence on seedling performance and survival of seven oak (Quercus) species. We imitated cotyledon predation at different stages of seedling establishment and development in order to detect effects on seedling height, leaf number and tissue/component mass.

    Seedling growth and survival were negatively affected by cotyledon loss regardless of oak species. However, these negative effects decreased as the epicotyl length at which cotyledons were removed increased. We also found that there was a threshold epicotyl length above which seedling survival and performance were relatively unaffected in white oak species compared to red oak species.

    Following cotyledon removal, early germinating white oak (sectionQuercus) seedlings survived and/or grew better than the late germinating red oak (sectionLobatae) seedlings. This was likely caused by a difference in dependence on cotyledon reserves, which ultimately affected the ability of seedlings to tolerate cotyledon removal.

    Synthesis.From an evolutionary perspective, this is likely to follow from the early germination in white oaks and the ability of seed consumers to locate young seedlings from the emerging epicotyls. Our study has implications for forest regeneration by suggesting additional opportunities for white oak species to establish following epicotyl emergence. Future studies should consider quantifying the rates of post‐germination cotyledon loss.

     
    more » « less