skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agvent, Lindsay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In southern New England, rapid ocean warming over the past two decades has caused substantial redistributions of fishes, invertebrates, and the fisheries they support. The rapid emergence of the warm water-tolerant Jonah crab (Cancer borealis) fishery, once discarded as bycatch from the now declining lobster fishery, illustrates a prime example of climate-adaptive shifts in southern New England fisheries. However, limited data exist on the basic life history of Jonah crabs, despite their growing economic and societal value. This hinders ocean management capacity to meet multiple ecological, economic, and socio-cultural goals of sustainable harvest. Off the southern coast of Rhode Island, Jonah crabs are currently harvested in two fishery zones (inshore and offshore) delineated as holdovers from the lobster management zones. Jonah crabs landed in the offshore fishing zone are significantly larger, on average, than those landed in the inshore fishing zone. This presentation gives an overview of a study developed to test the hypothesis that these size differences reflect ontogenetic migration of Jonah crabs from the inshore to offshore fishing zones. To do this, we developed seasonally resolved isoscapes (isotope maps) of the region, which revealed distinct geospatial gradients in environmental stable isotope values between inshore and offshore necessary to track potential movement of Jonah crabs between fishing zones. We then used stable isotope analysis of three Jonah crab tissues with differential metabolic turnover times: the carapace (reflecting residence one year ago), muscle (reflecting residence averaged over the last ~4 months), and hepatopancreas (reflecting residence averaged over the last ~4 weeks) to construct an “isotopic clock” of residence throughout the regional isoscapes. This work provides key data on critical life history characteristics of the Jonah crab through a collaborative effort by scientists at the University of Rhode Island and the Rhode Island Department of Environmental Management to inform management decisions on this emerging climate-adaptive fishery. 
    more » « less
  2. Limited work to date has examined plastic ingestion in highly migratory seabirds like Great Shearwaters ( Ardenna gravis ) across their entire migratory range. We examined 217 Great Shearwaters obtained from 2008–2019 at multiple locations spanning their yearly migration cycle across the Northwest and South Atlantic to assess accumulation of ingested plastic as well as trends over time and between locations. A total of 2328 plastic fragments were documented in the ventriculus portion of the gastrointestinal tract, with an average of 9 plastic fragments per bird. The mass, count, and frequency of plastic occurrence (FO) varied by location, with higher plastic burdens but lower FO in South Atlantic adults and chicks from the breeding colonies. No fragments of the same size or morphology were found in the primary forage fish prey, the Sand Lance ( Ammodytes spp., n = 202) that supports Great Shearwaters in Massachusetts Bay, United States, suggesting the birds directly ingest the bulk of their plastic loads rather than accumulating via trophic transfer. Fourier-transform infrared spectroscopy indicated that low- and high-density polyethylene were the most common polymers ingested, within all years and locations. Individuals from the South Atlantic contained a higher proportion of larger plastic items and fragments compared to analogous life stages in the NW Atlantic, possibly due to increased use of remote, pelagic areas subject to reduced inputs of smaller, more diverse, and potentially less buoyant plastics found adjacent to coastal margins. Different signatures of polymer type, size, and category between similar life stages at different locations suggests rapid turnover of ingested plastics commensurate with migratory stage and location, though more empirical evidence is needed to ground-truth this hypothesis. This work is the first to comprehensively measure the accumulation of ingested plastics by Great Shearwaters over the last decade and across multiple locations spanning their yearly trans-equatorial migration cycle and underscores their utility as sentinels of plastic pollution in Atlantic ecosystems. 
    more » « less