skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ah, Louis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2026
  2. Abstract Durable and conductive interfaces that enable chronic and high‐resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long‐term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) is described. This “block‐brush” provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge–discharge voltage sweeps on a multiarray neural electrode. In addition, the block‐brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application. 
    more » « less