- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ahijevych, David (1)
-
Ahijevych, David A. (1)
-
Anderson, Jennings (1)
-
Anderson, Kenneth M. (1)
-
Barton, C. Michael (1)
-
Becker, Charlie L. (1)
-
Bica, Melissa (1)
-
Davis, Christopher A. (1)
-
Demuth, Julie L. (1)
-
Fossell, Kathryn R. (1)
-
Gagne, David John (1)
-
Gantos, Gabrielle N. (1)
-
Henderson, Jennifer (1)
-
Kogan, Marina (1)
-
Lazrus, Heather (1)
-
Morss, Rebecca E. (1)
-
Palen, Leysia (1)
-
Schwartz, Craig S. (1)
-
Snyder, Chris (1)
-
Sobash, Ryan A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract While convective storm mode is explicitly depicted in convection-allowing model (CAM) output, subjectively diagnosing mode in large volumes of CAM forecasts can be burdensome. In this work, four machine learning (ML) models were trained to probabilistically classify CAM storms into one of three modes: supercells, quasi-linear convective systems, and disorganized convection. The four ML models included a dense neural network (DNN), logistic regression (LR), a convolutional neural network (CNN) and semi-supervised CNN-Gaussian mixture model (GMM). The DNN, CNN, and LR were trained with a set of hand-labeled CAM storms, while the semi-supervised GMM used updraft helicity and storm size to generate clusters which were then hand labeled. When evaluated using storms withheld from training, the four classifiers had similar ability to discriminate between modes, but the GMM had worse calibration. The DNN and LR had similar objective performance to the CNN, suggesting that CNN-based methods may not be needed for mode classification tasks. The mode classifications from all four classifiers successfully approximated the known climatology of modes in the U.S., including a maximum in supercell occurrence in the U.S. Central Plains. Further, the modes also occurred in environments recognized to support the three different storm morphologies. Finally, storm mode provided useful information about hazard type, e.g., storm reports were most likely with supercells, further supporting the efficacy of the classifiers. Future applications, including the use of objective CAM mode classifications as a novel predictor in ML systems, could potentially lead to improved forecasts of convective hazards.more » « less
-
Morss, Rebecca E.; Demuth, Julie L.; Lazrus, Heather; Palen, Leysia; Barton, C. Michael; Davis, Christopher A.; Snyder, Chris; Wilhelmi, Olga V.; Anderson, Kenneth M.; Ahijevych, David A.; et al (, Bulletin of the American Meteorological Society)Abstract During the last few decades, scientific capabilities for understanding and predicting weather and climate risks have advanced rapidly. At the same time, technological advances, such as the Internet, mobile devices, and social media, are transforming how people exchange and interact with information. In this modern information environment, risk communication, interpretation, and decision-making are rapidly evolving processes that intersect across space, time, and society. Instead of a linear or iterative process in which individual members of the public assess and respond to distinct pieces of weather forecast or warning information, this article conceives of weather prediction, communication, and decision-making as an interconnected dynamic system. In this expanded framework, information and uncertainty evolve in conjunction with people’s risk perceptions, vulnerabilities, and decisions as a hazardous weather threat approaches; these processes are intertwined with evolving social interactions in the physical and digital worlds. Along with the framework, the article presents two interdisciplinary research approaches for advancing the understanding of this complex system and the processes within it: analysis of social media streams and computational natural–human system modeling. Examples from ongoing research are used to demonstrate these approaches and illustrate the types of new insights they can reveal. This expanded perspective together with research approaches, such as those introduced, can help researchers and practitioners understand and improve the creation and communication of information in atmospheric science and other fields.more » « less
An official website of the United States government
