skip to main content


Search for: All records

Creators/Authors contains: "Ahmed, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soil microorganisms are pivotal in the global carbon cycle, but the viruses that affect them and their impact on ecosystems are less understood. In this study, we explored the diversity, dynamics, and ecology of soil viruses through 379 metagenomes collected annually from 2010 to 2017. These samples spanned the seasonally thawed active layer of a permafrost thaw gradient, which included palsa, bog, and fen habitats. We identified 5051 virus operational taxonomic units (vOTUs), doubling the known viruses for this site. These vOTUs were largely ephemeral within habitats, suggesting a turnover at the vOTU level from year to year. While the diversity varied by thaw stage and depth‐related patterns were specific to each habitat, the virus communities did not significantly change over time. The abundance ratios of virus to host at the phylum level did not show consistent trends across the thaw gradient, depth, or time. To assess potential ecosystem impacts, we predicted hostsin silicoand found viruses linked to microbial lineages involved in the carbon cycle, such as methanotrophy and methanogenesis. This included the identification of viruses ofCandidatusMethanoflorens, a significant global methane contributor. We also detected a variety of potential auxiliary metabolic genes, including 24 carbon‐degrading glycoside hydrolases, six of which are uniquely terrestrial. In conclusion, these long‐term observations enhance our understanding of soil viruses in the context of climate‐relevant processes and provide opportunities to explore their role in terrestrial carbon cycling.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  3. Heterochromatin is a gene-repressive protein–nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing. Given that these enzymes deposit guiding chemical information on chromatin they are commonly termed ‘writers’. While the processes of nucleation and central actions of writers have been extensively studied and reviewed, less is understood about how the spreading process is regulated. We discuss how the chromatin substrate is prepared for heterochromatic spreading, and howtrans-acting factors beyond writer enzymes regulate it. We examine mechanisms by whichtrans-acting factors in Suv39, PRC2, SETDB1 and SIR writer systems regulate spreading of the respective heterochromatic marks across chromatin. While these systems are in some cases evolutionarily and mechanistically quite distant, common mechanisms emerge which thesetrans-acting factors exploit to tune the spreading reaction.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Abstract

    In this study, a conjugate radiation/conduction multimode heat transfer analysis of cryogenic focused ion beam (FIB) milling steps necessary for producing ex situ lift out specimens under cryogenic conditions (cryo-EXLO) is performed. Using finite volume for transient heat conduction and enclosure theory for radiation heat transfer, the analysis shows that as long as the specimen is attached or touching the FIB side wall trenches, the specimen will remain vitreous indefinitely, while actively cooled at liquid nitrogen (LN2) temperatures. To simulate the time needed to perform a transfer step to move the bulk sample containing the FIB-thinned specimen from the cryo-FIB to the cryo-EXLO cryostat, the LN2 temperature active cooling is turned off after steady-state conditions are reached and the specimen is monitored over time until the critical devitrification temperature is reached. Under these conditions, the sample will remain vitreous for >3 min, which is more than enough time needed to perform the cryo-transfer step from the FIB to the cryostat, which takes only ∼10 s. Cryo-transmission electron microscopy images of a manipulated cryo-EXLO yeast specimen prepared with cryo-FIB corroborates the heat transfer analysis.

     
    more » « less
  5. Abstract

    Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxaProchlorococcusandPelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.

     
    more » « less