skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Toufique"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Well-trained machine-learning models, which leverage large amounts of open-source software data, have now become an interesting approach to automating many software engineering tasks. Several SE tasks have all been subject to this approach, with performance gradually improving over the past several years with better models and training methods. More, and more diverse, clean, labeled data is better for training; but constructing good-quality datasets is time-consuming and challenging. Ways of augmenting the volume and diversity of clean, labeled data generally have wide applicability. For some languages (e.g., Ruby) labeled data is less abundant; in others (e.g., JavaScript) the available data maybe more focused on some application domains, and thus less diverse. As a way around such data bottlenecks, we present evidence suggesting that human-written code in different languages (which performs the same function), is rather similar, and particularly preserving of identifier naming patterns; we further present evidence suggesting that identifiers are a very important element of training data for software engineering tasks. We leverage this rather fortuitous phenomenon to find evidence that available multilingual training data (across different languages) can be used to amplify performance. We study this for 3 different tasks: code summarization, code retrieval, and function naming. We note that this data-augmenting approach is broadly compatible with different tasks, languages, and machine-learning models. 
    more » « less
  2. Much software, whether beneficent or malevolent, is distributed only as binaries, sans source code. Absent source code, understanding binaries' behavior can be quite challenging, especially when compiled under higher levels of compiler optimization. These optimizations can transform comprehensible, ``natural" source constructions into something entirely unrecognizable. Reverse engineering binaries, especially those suspected of being malevolent or guilty of intellectual property theft, are important and time-consuming tasks. There is a great deal of interest in tools to ``decompile" binaries back into more natural source code to aid reverse engineering. Decompilation involves several desirable steps, including recreating source-language constructions, variable names, and perhaps even comments. One central step in creating binaries is optimizing function calls, using steps such as inlining. Recovering these (possibly inlined) function calls from optimized binaries is an essential task that most state-of-the-art decompiler tools try to do but do not perform very well. In this paper, we evaluate a supervised learning approach to the problem of recovering optimized function calls. We leverage open-source software and develop an automated labeling scheme to generate a reasonably large dataset of binaries labeled with actual function usages. We augment this large but limited labeled dataset with a pre-training step, which learns the decompiled code statistics from a much larger unlabeled dataset. Thus augmented, our learned labeling model can be combined with an existing decompilation tool, Ghidra, to achieve substantially improved performance in function call recovery, especially at higher levels of optimization. 
    more » « less
  3. TypeScript is a widely used optionally-typed language where developers can adopt “pay as you go” typing: they can add types as desired, and benefit from static typing. The “type annotation tax” or manual effort required to annotate new or existing TypeScript can be reduced by a variety of automatic methods. Probabilistic machine-learning (ML) approaches work quite well. ML approaches use different inductive biases, ranging from simple token sequences to complex graphical neural network (GNN) models capturing syntax and semantic relations. More sophisticated inductive biases are hand-engineered to exploit the formal nature of software. Rather than deploying fancy inductive biases for code, can we just use “big data” to learn natural patterns relevant to typing? We find evidence suggesting that this is the case. We present TypeBert, demonstrating that even with simple token-sequence inductive bias used in BERT-style models and enough data, type-annotation performance of the most sophisticated models can be surpassed. 
    more » « less