- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yue, W; Teng, M; Peng, Y; Xia, F; Tsao, P; Gao, Y; Ikeuch, S; Aida, Y; Umezawa, S; Lin, L (, Transducers Research Foundation)This work reports a platform based on ultrasound for mid-air particle manipulations using a 2×2 piezoelectric micromachined ultrasonic transducer (pMUT) array. Three achievements have been demonstrated as compared to the state-of-art: (1) high SPL (sound pressure level) of 120 dB at a distance 12 mm away by an individual lithium-niobate pMUT; (2) a numerically simulated and experimentally demonstrated 2D focal point control scheme by adjusting the phase-delay of individual pMUTs; and (3) the experimental demonstration of moving a 0.7 mg foam plastic particle of 12 mm away in the mid-air by ~1.8 mm. As such, this work shows the potential for practical applications in the broad fields of non-contact actuations, including particle manipulations in microfluidics, touchless haptic sensations, … etc.more » « less
-
Yue, W.; Peng, Y.; Liu, H.; Xia, F.; Sui, F.; Umezawa, S.; Ikeuchi, S.; Aida, Y.; and Lin, L. (, 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS))This work reports an engineered platform for the non-contact haptic stimulation on human skins by means of an array of piezoelectric micromachined ultrasonic transducer (pMUT) via the beamforming scheme. Compared to the state-of-art reports, three distinctive achievements have been demonstrated: (1) individual single pMUT unit based on lithium niobate (LN) with measured high SPL (sound pressure level) of 133 dB at 2 mm away; (2) a beamforming scheme simulated and experimentally proved to generate ~2.3x higher pressure near the focal point; and (3) the combination of auto-positioning and haptic stimulations on volunteers with the smallest reported physical device size to achieve haptic sensations. As such, this work could have practical applications in the broad areas to stimulate haptic sensations, such as AR (Augmented Reality), VR (Virtual Reality), and robotics.more » « less
An official website of the United States government

Full Text Available