- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ajelli, Marco (2)
-
Chinazzi, Matteo (2)
-
Vespignani, Alessandro (2)
-
Aawar, Majd Al (1)
-
Adiga, Aniruddha (1)
-
Agarwal, Pulak (1)
-
Aleta, Alberto (1)
-
Baccam, Prasith (1)
-
Balusu, Srikar (1)
-
Basu, Avranil (1)
-
Ben-Nun, Michal (1)
-
Biggerstaff, Matthew (1)
-
Borchering, Rebecca K (1)
-
Bosse, Nikos (1)
-
Brooks, Logan C (1)
-
Butler, Patrick (1)
-
Carcelen, Erica (1)
-
Chen, Ye (1)
-
Clemente, Leonardo (1)
-
Cojocaru, Monica G (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite the global impact of the coronavirus disease 2019 pandemic, the question of whether mandated interventions have similar economic and public health effects as spontaneous behavioural change remains unresolved. Addressing this question, and understanding differential effects across socioeconomic groups, requires building quantitative and fine-grained mechanistic models. Here we introduce a data-driven, granular, agent-based model that simulates epidemic and economic outcomes across industries, occupations and income levels. We validate the model by reproducing key outcomes of the first wave of coronavirus disease 2019 in the New York metropolitan area. The key mechanism coupling the epidemic and economic modules is the reduction in consumption due to fear of infection. In counterfactual experiments, we show that a similar trade-off between epidemic and economic outcomes exists both when individuals change their behaviour due to fear of infection and when non-pharmaceutical interventions are imposed. Low-income workers, who perform in-person occupations in customer-facing industries, face the strongest trade-off.more » « less
-
Mathis, Sarabeth M; Webber, Alexander E; León, Tomás M; Murray, Erin L; Sun, Monica; White, Lauren A; Brooks, Logan C; Green, Alden; Hu, Addison J; Rosenfeld, Roni; et al (, Nature Communications)Abstract Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2ndmost accurate model measured by WIS in 2021–22 and the 5thmost accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
