skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akbar, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Several unobtrusive sensors have been tested in studies to capture physiological reactions to stress in workplace settings. Lab studies tend to focus on assessing sensors during a specific computer task, while in situ studies tend to offer a generalized view of sensors’ efficacy for workplace stress monitoring, without discriminating different tasks. Given the variation in workplace computer activities, this study investigates the efficacy of unobtrusive sensors for stress measurement across a variety of tasks. We present a comparison of five physiological measurements obtained in a lab experiment, where participants completed six different computer tasks, while we measured their stress levels using a chest-band (ECG, respiration), a wristband (PPG and EDA), and an emerging thermal imaging method (perinasal perspiration). We found that thermal imaging can detect increased stress for most participants across all tasks, while wrist and chest sensors were less generalizable across tasks and participants. We summarize the costs and benefits of each sensor stream, and show how some computer use scenarios present usability and reliability challenges for stress monitoring with certain physiological sensors. We provide recommendations for researchers and system builders for measuring stress with physiological sensors during workplace computer use. 
    more » « less
  2. We present a search for long-lived particles (LLPs), produced in kaon decays, that decay to two muons inside the ICARUS neutrino detector. This channel would be a signal of hidden sector models that can address outstanding issues in particle physics such as the strong CP problem and the microphysical origin of dark matter. The search is performed with data collected in the Neutrinos at the Main Injector (NuMI) beam at Fermilab corresponding to 2.41 × 10 20 protons-on-target. No new physics signal is observed, and we set world leading limits on heavy QCD axions, as well as for the Higgs portal scalar among dedicated searches. Limits are also presented in a model-independent way applicable to any new physics model predicting the process K π + S ( μ μ ) , for a LLP S . This result is the first search for new physics performed with the ICARUS detector at Fermilab. It paves the way for the future program of LLP searches at ICARUS. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract This paper reports on a measurement of electron-ion recombination in liquid argon in the ICARUS liquid argon time projection chamber (LArTPC). A clear dependence of recombination on the angle of the ionizing particle track relative to the drift electric field is observed. An ellipsoid modified box (EMB) model of recombination describes the data across all measured angles. These measurements are used for the calorimetric energy scale calibration of the ICARUS TPC, which is also presented. The impact of the EMB model is studied on calorimetric particle identification, as well as muon and proton energy measurements. Accounting for the angular dependence in EMB recombination improves the accuracy and precision of these measurements. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. We present measurements of the cross section for antineutrino charged-current quasielasticlike scattering on hydrocarbon using the medium energy NuMI wide-band neutrino beam peaking at antineutrino energy hE¯νi ∼ 6 GeV. The measurements are presented as a function of the longitudinal momentum (pjj) and transverse momentum (pT) of the final state muon. This work complements our previously reported high statistics measurement in the neutrino channel and extends the previous antineutrino measurement made in a low energy beam at hE¯νi ∼ 3.5 GeV out to pT of 2.5 GeV=c. Current theoretical models do not completely describe the data in this previously unexplored high pT region. The single differential cross section as a function of four-momentum transfer (Q2 QE) now extends to 4 GeV2 with high statistics. The cross section as a function of Q2 QE shows that the tuned simulations developed by the MINERvA Collaboration that agreed well with the low energy beam measurements do not agree as well with the medium energy beam measurements. Newer neutrino interaction models such as the GENIE v3 tunes are better able to simulate the high Q2 QE region. 
    more » « less
  6. Abstract We compare different neural network architectures for machine learning algorithms designed to identify the neutrino interaction vertex position in the MINERvA detector. The architectures developed and optimized by hand are compared with the architectures developed in an automated way using the package “Multi-node Evolutionary Neural Networks for Deep Learning” (MENNDL), developed at Oak Ridge National Laboratory. While the domain-expert hand-tuned network was the best performer, the differences were negligible and the auto-generated networks performed as well. There is always a trade-off between human, and computer resources for network optimization and this work suggests that automated optimization, assuming resources are available, provides a compelling way to save significant expert time. 
    more » « less