skip to main content

Search for: All records

Creators/Authors contains: "Akella, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. The wide adoption of the emerging SmartNIC technology creates new opportunities to offload application-level computation into the networking layer, which frees the burden of host CPUs, leading to performance improvement. Shuffle, the all-to-all data exchange process, is a critical building block for network communication in distributed data-intensive applications and can potentially benefit from SmartNICs. In this paper, we develop SmartShuffle, which accelerates the data-intensive application's shuffle process by offloading various computation tasks into the SmartNIC devices. SmartShuffle supports offloading both low-level network functions, including data partitioning and network transport, and high-level computation tasks, including filtering, aggregation, and sorting. SmartShuffle adopts a coordinated offload architecture to make sender-side and receiver-side SmartNICs jointly contribute to the benefits of shuffle computation offload. SmartShuffle carefully manages the tight and time-varying computation and memory constraints on the device. We propose a liquid offloading approach, which dynamically migrates operators between the host CPU and the SmartNIC at runtime such that resources in both devices are fully utilized. We prototype SmartShuffle on the Stingray SoC SmartNICs and plug it into Spark. Our evaluation shows that SmartShuffle improves host CPU efficiency and I/O efficiency with lower job completion time. SmartShuffle outperforms Spark, and Spark RDMA by up to 40% on TPC-H. 
    more » « less
    Free, publicly-accessible full text available May 19, 2024
  3. This paper presents the motivation and design of MTP, a new offload-friendly message transport protocol. Existing transport protocols like TCP, MPTCP, and UDP/Quic all have key limitations when used in a network that may potentially offload computation from end-servers into NICs, switches, and other network devices. To enable important new in-network computing use cases and correct congestion control in the face of ever changing network paths and application replicas, MTP introduces a new message transport protocol design and pathlet congestion control, a new approach where end-hosts explicitly communicate messaging information to network devices and network devices explicitly communicate network path and congestion information back to end-hosts. 
    more » « less