skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akhmedov, Novruz_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 2,6‐Bis(pyrrol‐2‐yl)pyridines are important building blocks for supramolecular assemblies and photoluminescent main group and transition metal compounds. Sterically encumbered 2,6‐bis(5‐(2,4,6‐trimethylphenyl)‐3‐phenyl‐1H‐pyrrol‐2‐yl)pyridine, H2MesPDPPh, can adopt monomeric and dimeric structures in the solid state and in solution, controlled by competing inter‐ and intramolecular hydrogen bonds. Deprotonation in the presence of lithium cations provides Li2MesPDPPh, which can be isolated in monomeric and dimeric forms depending on solvent polarity. Protonation of H2MesPDPPhdisrupts intramolecular hydrogen bonding and provides the monomeric pyridinium salt [H3MesPDPPh]Cl. Independent of solvent polarity, all three derivatives exhibit intense fluorescence in solution. The absorption and emission spectra are highly sensitive to the level of protonation, which can be rationalized by the effects of (de)protonation on the HOMO and LUMO of the tricyclic π‐system. 
    more » « less
  2. Abstract A reverse‐binding‐selectivity between monovalent and divalent cations was observed for two different self‐assembly G16‐hexadecamer and G8‐octamer systems. The dissociation constant between G4‐quadruplex and monomer was calculated via VT‐1H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+compared with K+in the G8‐octamer system despite stronger ion‐dipole interactions. This study is the first direct comparison of the G4‐quartet binding affinity between mono and divalent cations and will benefit future applications of G‐quadruplex‐related research. Further competition experiments between the G8‐octamer and 18‐crown‐6 with K+demonstrated the potential of this G8system as a new potassium receptor. 
    more » « less