skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akinyemi, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Programming Protocol-independent Packet Processors (P4) is an open-source domain-specific language to aid the data plane devices in programming packet forwarding. It has a variety of constructs optimized for this purpose. With P4, one can program ASICs, PISA chips, FPGAs, and many network devices since the language constructs allow true independence in some aspects that OpenFlow could not support. However, there are some challenges facing this technology. The first challenge is that P4 does not account for malicious traffic detection in the data plane pipeline. 2. The controllers have no secure medium of attack signature exchange. This ongoing work presents a multichain solution for detecting malicious traffic and exchanging attack signatures among controllers. This architecture uses an Artificial Immune System (AIS) based Intrusion Detection System (IDS), which runs on a distributed blockchain network, to introspect the P4 data plane to analyze and detect anomaly traffic flows. This IDS resides on the SideChain smart contracts and constantly monitors the traffic flow at the data planes based on introspection. Once malicious traffic is detected on any SideChain, the signatures are extracted and passed through the signature forwarding node to the MainChain for real-time storage. The malicious signatures are sent to all controllers via the mainchain network. We minimize the congestion the solution can cause to the P4 network by utilizing a load balancer to serve the SideChain. To evaluate the performance, we evaluate the False Positive Rate (FPR), Detection Rate (DR), and Accuracy (ACC) of the IDS. We also compute the execution time, performance overhead, and scalability of the proposed solution. 
    more » « less
  2. P4 (Programming Protocol-Independent Packet Processors) represents a paradigm shift in network programmability by providing a high-level language to define packet processing behavior in network switches/devices. The importance of P4 lies in its ability to overcome the limitations of OpenFlow, the previous de facto standard for software-defined networking (SDN). Unlike OpenFlow, which operates on fixed match-action tables, P4 offers an approach where network operators can define packet processing behaviors at various protocol layers. P4 provides a programmable platform to create and implement custom network switches/devices protocols. However, this opens a new attack surface for threat actors who can access P4-enabled switches/devices and manipulate custom protocols for malicious purposes. Attackers can craft malicious packets to exploit protocol-specific vulnerabilities in these network devices. This ongoing research work proposes a blockchain-based model to secure P4 custom protocols. The model leverages the blockchain’s immutability, tamperproof ability, distributed consensus for protocol governance, and auditing to guarantee the transparency, security, and integrity of custom protocols defined in P4 programmable switches. The protocols are recorded as transactions and stored on the blockchain network. The model's performance will be evaluated using execution time in overhead computation, false positive rate, and network scalability. 
    more » « less