skip to main content

Search for: All records

Creators/Authors contains: "Akkaoui, Khalil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pinhole-free ultrathin films of polyelectrolyte complex assembled using layer-by-layer deposition were used to evaluate electron transfer from a redox species in solution to an electrode over the distance range 1 to 9 nm. Over this thickness, the polyelectrolytes employed wet the surface and the polymer molecules flatten to less than their equilibrium size in 3-dimensions. A decay constant β for current as a function of distance of about 0.3 nm-1 placed this system in the regime expected for multistep hopping versus a one-step tunneling event. Discreet hopping sites within the films were identified as ferrocyanide ions with an equilibrium concentration of 0.032 M and an average separation of 3.7 nm. The Butler-Volmer (BV) expression for electron transfer as a function of overpotential was modified by distributing the applied voltage evenly amongst the hopping sites. This modified BV expression fit both the distance dependence and the applied potential dependence well, wherein the only freely adjustable parameter was the electron transfer coefficient. The finding that β is simply the inverse of the hopping range is consistent with previous conclusions that electrons within conjugated molecule sites are delocalized, or, for non-conjugated systems, spread over more than one repeat unit by lattice distortions