Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural properties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, structural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of design features, different methods and perspectives of pore surface engineering along with their versatile roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, energy storage and environmental remediation.more » « less
-
Abstract Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non‐metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal–organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio‐selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.more » « less
-
Abstract One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape‐selectivity of product by the confined spatial environment. The success of shape‐selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal‐organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape‐selectivity for the reactions. For this purpose, a series of binding site‐accessible metal metalloporphyrin‐frameworks (MMPFs) have been investigated to shed light on the nature of enzyme‐mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity.more » « less
-
Abstract The capture of the xenon and krypton from nuclear reprocessing off‐gas is essential to the treatment of radioactive waste. Although various porous materials have been employed to capture Xe and Kr, the development of high‐performance adsorbents capable of trapping Xe/Kr at very low partial pressure as in the nuclear reprocessing off‐gas conditions remains challenging. Herein, we report a self‐adjusting metal‐organic framework based on multiple weak binding interactions to capture trace Xe and Kr from the nuclear reprocessing off‐gas. The self‐adjusting behavior of ATC‐Cu and its mechanism have been visualized by the in‐situ single‐crystal X‐ray diffraction studies and theoretical calculations. The self‐adjusting behavior endows ATC‐Cu unprecedented uptake capacities of 2.65 and 0.52 mmol g−1for Xe and Kr respectively at 0.1 bar and 298 K, as well as the record Xe capture capability from the nuclear reprocessing off‐gas. Our work not only provides a benchmark Xe adsorbent but proposes a new route to construct smart materials for efficient separations.more » « less
-
Abstract Rhenium is one of the most valuable elements found in nature, and its capture and recycle are highly desirable for resource recovery. However, the effective and efficient collection of this material from industrial waste remains quite challenging. Herein, a tetraphenylmethane‐based cationic polymeric network (CPN‐tpm) nanotrap is designed, synthesized, and evaluated for ReO4−recovery. 3D building units are used to construct imidazolium salt‐based polymers with positive charges, which yields a record maximum uptake capacity of 1133 mg g−1for ReO4−collection as well as fast kinetics ReO4−uptake. The sorption equilibrium is reached within 20 min and akdvalue of 8.5 × 105mL g−1is obtained. The sorption capacity of CPN‐tpm remains stable over a wide range of pH values and the removal efficiency exceeds 60% for pH levels below 2. Moreover, CPN‐tpm exhibits good recyclability for at least five cycles of the sorption–desorption process. This work provides a new route for constructing a kind of new high‐performance polymeric material for rhenium recovery and rhenium‐contained industrial wastewater treatment.more » « less
An official website of the United States government
