skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Al-Haddad, Tristan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. This paper presents a method for the digital reconstruction of the geometry of a wind turbine blade from a point-cloud model to polysurface model. The digital reconstruction of the blade geometry is needed to develop computer models that can be used by architects and engineers to design and analyze blade parts for reuse and recycling of decommissioned wind turbine blades. Initial studies of wind-blade geometry led to the creation of an airfoil database that stores the normalized coordinates of publicly-available airfoil profiles. A workflow was developed in which these airfoil profiles are best-fitted to targeted cross-sections of point-cloud representations of a blade. The method for best-fitting airfoil curves is optimized by minimizing the distance between points sampled on the curve and point-cloud cross section. To demonstrate the workflow, a digitally-created point-cloud model of a 100 m blade developed by Sandia National Laboratory was used to test the reconstruction routine. 
    more » « less