Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

We consider the maximum vertexweighted matching problem (MVM), in which nonnegative weights are assigned to the vertices of a graph, and the weight of a matching is the sum of the weights of the matched vertices. Although exact algorithms for MVM are faster than exact algorithms for the maximum edgeweighted matching problem, there are graphs on which these exact algorithms could take hundreds of hours. For a natural number k, we design a k/(k + 1)approximation algorithm for MVM on nonbipartite graphs that updates the matching along certain short paths in the graph: either augmenting paths of length at most 2k + 1 or weightincreasing paths of length at most 2k. The choice of k = 2 leads to a 2/3approximation algorithm that computes nearly optimal weights fast. This algorithm could be initialized with a 2/3approximate maximum cardinality matching to reduce its runtime in practice. A 1/2approximation algorithm may be obtained using k = 1, which is faster than the 2/3approximation algorithm but it computes lower weights. The 2/3approximation algorithm has time complexity O(Δ2m) while the time complexity of the 1/2approximation algorithm is O(Δm), where m is the number of edges and Δ is the maximum degree of a vertex. Results from our serial implementations show that on average the 1/2approximation algorithm runs faster than the Suitor algorithm (currently the fastest 1/2approximation algorithm) while the 2/3approximation algorithm runs as fast as the Suitor algorithm but obtains higher weights for the matching. One advantage of the proposed algorithms is that they are wellsuited for parallel implementation since they can process vertices to match in any order. The 1/2 and 2/3approximation algorithms have been implemented on a shared memory parallel computer, and both approximation algorithms obtain good speedups, while the former algorithm runs faster on average than the parallel Suitor algorithm. Care is needed to design the parallel algorithm to avoid cyclic waits, and we prove that it is livelock free.more » « less