skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "AlZoubi, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a growing interest in the research and use of automated feedback dashboards that display classroom analytics; yet little is known about the detailed processes instructors use to make sense of these tools, and to determine the impact on their teaching practices. This research was conducted at a public Midwestern university within the context of an automated classroom observation and feedback implementation project. Fifteen engineering instructors engaged in this research. The overarching goal was to investigate instructor teaching beliefs, pedagogical practices, and sensemaking processes regarding dashboard use. A grounded theory approach was used to identify categories related to instructor perceptions. Results revealed that instructor experiences inform both their present use of the dashboard and consequential future actions. A model is presented that illustrates categories included in instructor pre-use, use, and post-use of an automated feedback dashboard. An extension to this model is presented and accompanied by recommendations for a more effective future use of automated dashboards. The model’s practical implications inform both instructors and designers on effective design and use of dashboards, ultimately paving a way to improve pedagogical practices and instruction 
    more » « less
  2. Abstract Computational analysis methods and machine learning techniques introduce innovative ways to capture classroom interactions and display data on analytics dashboards. Automated classroom analytics employ advanced data analysis, providing educators with comprehensive insights into student participation, engagement, and behavioral trends within classroom settings. Through the provision of context-sensitive feedback, automated classroom analytics systems can be integrated into the evidence-based pedagogical decision-making and reflective practice processes of faculty members in higher education institutions. This paper presents TEACHActive, an automated classroom analytics system, by detailing its design and implementation. It outlines the processes of stakeholder engagement and mapping, elucidates the benefits and obstacles associated with a comprehensive classroom analytics system design, and concludes by discussing significant implications. These implications propose user-centric design approaches for higher education researchers and practitioners to consider. 
    more » « less
  3. null (Ed.)