skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Alam, Mahbub"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 7, 2025
  2. Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g−1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g−1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g−1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g−1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g−1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g−1) > white (2.5 × 1016 ± 4.4 × 1016 spins g−1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g−1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  3. Free, publicly-accessible full text available May 14, 2025
  4. Arctic autochthonous communities and the environment face unprecedented challenges due to climate change and anthropogenic activities. One less-explored aspect of these challenges is the release and distribution of anthropogenic nanomaterials in autochthonous communities. This study pioneers a comprehensive investigation into the nature and dispersion of anthropogenic nanomaterials within Arctic Autochthonous communities, originating from their traditional waste-burning practices. Employing advanced nanoanalytical tools, we unraveled the nature and prevalence of nanomaterials, including metal oxides (TiO2, PbO), alloys (SnPb, SbPb, SnAg, SnCu, SnZn), chromated copper arsenate-related nanomaterials (CuCrO2, CuCr2O4), and nanoplastics (polystyrene and polypropylene) in snow and sediment near waste burning sites. This groundbreaking study illuminates the unintended consequences of waste burning in remote Arctic areas, stressing the urgent need for interdisciplinary research, community engagement, and sustainable waste management. These measures are crucial to safeguard the fragile Arctic ecosystem and the health of autochthonous communities. 
    more » « less
    Free, publicly-accessible full text available August 14, 2025