skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alam, Ornob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices. 
    more » « less
  2. Abstract Setaria italica(foxtail millet), a founder crop of East Asian agriculture, is a model plant for C4 photosynthesis and developing approaches to adaptive breeding across multiple climates. Here we established theSetariapan-genome by assembling 110 representative genomes from a worldwide collection. The pan-genome is composed of 73,528 gene families, of which 23.8%, 42.9%, 29.4% and 3.9% are core, soft core, dispensable and private genes, respectively; 202,884 nonredundant structural variants were also detected. The characterization of pan-genomic variants suggests their importance during foxtail millet domestication and improvement, as exemplified by the identification of the yield geneSiGW3, where a 366-bp presence/absence promoter variant accompanies gene expression variation. We developed a graph-based genome and performed large-scale genetic studies for 68 traits across 13 environments, identifying potential genes for millet improvement at different geographic sites. These can be used in marker-assisted breeding, genomic selection and genome editing to accelerate crop improvement under different climatic conditions. 
    more » « less