skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Albab, Kinan Dak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Private Information Retrieval (PIR) allows several clients to query a database held by one or more servers, such that the contents of their queries remain private. Prior PIR schemes have achieved sublinear communication and computation by leveraging computational assumptions, federating trust among many servers, relaxing security to permit differentially private leakage, refactoring effort into an offline stage to reduce online costs, or amortizing costs over a large batch of queries. In this work, we present an efficient PIR protocol that combines all of the above techniques to achieve constant amortized communication and computation complexity in the size of the database and constant client work. We leverage differentially private leakage in order to provide better trade-offs between privacy and efficiency. Our protocol achieves speedups up to and exceeding 10x in practical settings compared to state of the art PIR protocols, and can scale to batches with hundreds of millions of queries on cheap commodity AWS machines. Our protocol builds upon a new secret sharing scheme that is both incremental and non-malleable, which may be of interest to a wider audience. Our protocol provides security up to abort against malicious adversaries that can corrupt all but one party. 
    more » « less
  2. An essential component of initiatives that aim to address pervasive inequalities of any kind is the ability to collect empirical evidence of both the status quo baseline and of any improvement that can be attributed to prescribed and deployed interventions. Unfortunately, two substantial barriers can arise preventing the collection and analysis of such empirical evidence: (1) the sensitive nature of the data itself and (2) a lack of technical sophistication and infrastructure available to both an initiative’s beneficiaries and to those spearheading it. In the last few years, it has been shown that a cryptographic primitive called secure multi-party computation (MPC) can provide a natural technological resolution to this conundrum. MPC allows an otherwise disinterested third party to contribute its technical expertise and resources, to avoid incurring any additional liabilities itself, and (counterintuitively) to reduce the level of data exposure that existing parties must accept to achieve their data analysis goals. However, achieving these benefits requires the deliberate design of MPC tools and frameworks whose level of accessibility to non-technical users with limited infrastructure and expertise is state-of-the-art. We describe our own experiences designing, implementing, and deploying such usable web applications for secure data analysis within the context of two real-world initiatives that focus on promoting economic equality. 
    more » « less