skip to main content


Search for: All records

Creators/Authors contains: "Albert, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Cooking is an important but understudied source of urban anthropogenic fine particulate matter (PM2.5). Using a mobile laboratory, we measured PM size and composition in urban restaurant plumes. Size distribution measurements indicate that restaurants are a source of urban ultrafine particles (UFPs, particles <100 nm mobility diameter), with a mode diameter <50 nm across sampled restaurants and particle number concentrations (PNCs, a proxy for UFPs) that were substantially elevated relative to the urban background. In our observations, PM mass emitted from restaurants was almost entirely organic aerosol (OA). Aerosol mass spectra show that while emissions from most restaurants were similar, there were key mass spectral differences. All restaurants emit OA at m/z 41, 43, and 55, though the composition (e.g., the ratio of oxygenated to reduced ions at specific m/z) varied across locations. All restaurant emissions included reduced-nitrogen species detected as CxHyN+ fragments, making up ∼15 % of OA mass measured in plumes, with reduced molecular functionalities (e.g., amines, imides) that were often accompanied by oxygen-containing functional groups. The largest reduced-nitrogen emissions were observed from a commercial bread bakery (i.e., 30 %–50 % of OA mass), highlighting the marked differences between restaurants and their importance for emissions of both urban UFPs and reduced nitrogen.

     
    more » « less
    Free, publicly-accessible full text available January 30, 2025
  2. Our method measures atmospheric BC concentrations by analyzing photos of particle deposits on glass-fiber filters. Post-analysis of beta attenuation monitor (BAM) tapes collected worldwide can be a valuable source for hourly BC data, particularly for Global South countries.

     
    more » « less
  3. ABSTRACT

    We present JWST images of the well-known planetary nebula NGC 6720 (the Ring Nebula), covering wavelengths from 1.6 to 25 $\, \mu$m. The bright shell is strongly fragmented with some 20 000 dense globules, bright in H2, with a characteristic diameter of 0.2 arcsec and density nH ∼ 105–106 cm−3. The shell contains a narrow ring of polycyclic aromatic hydrocarbon (PAH) emission. H2 is found throughout the shell and also in the halo. H2 in the halo may be located on the swept-up walls of a biconal polar flow. The central cavity is filled with high-ionization gas and shows two linear structures which we suggest are the edges of a biconal flow, seen in projection against the cavity. The central star is located 2 arcsec from the emission centroid of the cavity and shell. Linear features (‘spikes’) extend outward from the ring, pointing away from the central star. Hydrodynamical simulations reproduce the clumping and possibly the spikes. Around 10 low-contrast, regularly spaced concentric arc-like features are present; they suggest orbital modulation by a low-mass companion with a period of about 280 yr. A previously known much wider companion is located at a projected separation of about 15 000 au; we show that it is an M2–M4 dwarf. NGC 6720 is therefore a triple star system. These features, including the multiplicity, are similar to those seen in the Southern Ring Nebula (NGC 3132) and may be a common aspect of such nebulae.

     
    more » « less
  4. Abstract Recent progress in the field of micron-scale spatial resolution direct conversion X-ray detectors for high-energy synchrotron light sources serve applications ranging from nondestructive and noninvasive microscopy techniques which provide insight into the structure and morphology of crystals, to medical diagnostic measurement devices. Amorphous selenium ( a -Se) as a wide-bandgap thermally evaporated photoconductor exhibits ultra-low thermal generation rates for dark carriers and has been extensively used in X-ray medical imaging. Being an amorphous material, it can further be deposited over large areas at room temperatures and at substantially lower costs as compared to crystalline semiconductors. To address the demands for a high-energy and high spatial resolution X-ray detector for synchrotron light source applications, we have thermally evaporated a -Se on a Mixed-Mode Pixel Array Detector (MM-PAD) Application Specific Integrated Circuit (ASIC). The ASIC format consists of 128 × 128 square pixels each 150 μm on a side. A 200 μm a -Se layer was directly deposited on the ASIC followed by a metal top electrode. The completed detector assembly was tested with 45 kV Ag and 23 kV Cu X-ray tube sources. The detector fabrication, performances, Modulation Transfer Function (MTF) measurements, and simulations are reported. 
    more » « less
  5. Abstract There is definitive evidence that microplastics, defined as plastic particles less than 5 mm in size, are ubiquitous in the environment and can cause harm to aquatic organisms. These findings have prompted legislators and environmental regulators to seek out strategies for managing risk. However, microplastics are also an incredibly diverse contaminant suite, comprising a complex mixture of physical and chemical characteristics (e.g., sizes, morphologies, polymer types, chemical additives, sorbed chemicals, and impurities), making it challenging to identify which particle characteristics might influence the associated hazards to aquatic life. In addition, there is a lack of consensus on how microplastic concentrations should be reported. This not only makes it difficult to compare concentrations across studies, but it also begs the question as to which concentration metric may be most informative for hazard characterization. Thus, an international panel of experts was convened to identify 1) which concentration metrics (e.g., mass or count per unit of volume or mass) are most informative for the development of health-based thresholds and risk assessment and 2) which microplastic characteristics best inform toxicological concerns. Based on existing knowledge, it is recommended that microplastic concentrations in toxicity tests are calculated from both mass and count at minimum, though ideally researchers should report additional metrics, such as volume and surface area, which may be more informative for specific toxicity mechanisms. Regarding particle characteristics, there is sufficient evidence to conclude that particle size is a critical determinant of toxicological outcomes, particularly for the mechanisms of food dilution and tissue translocation . 
    more » « less
  6. The phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family of lipid-modifying enzymes generate the majority of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ] lipids found at the plasma membrane in eukaryotic cells. PI(4,5)P 2 lipids serve a critical role in regulating receptor activation, ion channel gating, endocytosis, and actin nucleation. Here, we describe how PIP5K activity is regulated by cooperative binding to PI(4,5)P 2 lipids and membrane-mediated dimerization of the kinase domain. In contrast to constitutively dimeric phosphatidylinositol 5-phosphate 4-kinase (PIP4K, type II PIPK), solution PIP5K exists in a weak monomer–dimer equilibrium. PIP5K monomers can associate with PI(4,5)P 2 -containing membranes and dimerize in a protein density-dependent manner. Although dispensable for cooperative PI(4,5)P 2 binding, dimerization enhances the catalytic efficiency of PIP5K through a mechanism consistent with allosteric regulation. Additionally, dimerization amplifies stochastic variation in the kinase reaction velocity and strengthens effects such as the recently described stochastic geometry sensing. Overall, the mechanism of PIP5K membrane binding creates a broad dynamic range of lipid kinase activities that are coupled to the density of PI(4,5)P 2 and membrane-bound kinase. 
    more » « less
  7. Abstract Microplastic particles (MPs) are ubiquitous across a wide range of aquatic habitats but determining an appropriate level of risk management is hindered by a poor understanding of environmental risk. Here, we introduce a risk management framework for aquatic ecosystems that identifies four critical management thresholds, ranging from low regulatory concern to the highest level of concern where pollution control measures could be introduced to mitigate environmental emissions. The four thresholds were derived using a species sensitivity distribution (SSD) approach and the best available data from the peer-reviewed literature. This included a total of 290 data points extracted from 21 peer-reviewed microplastic toxicity studies meeting a minimal set of pre-defined quality criteria. The meta-analysis resulted in the development of critical thresholds for two effects mechanisms: food dilution with thresholds ranging from ~ 0.5 to 35 particles/L, and tissue translocation with thresholds ranging from ~ 60 to 4100 particles/L. This project was completed within an expert working group, which assigned high confidence to the management framework and associated analytical approach for developing thresholds, and very low to high confidence in the numerical thresholds. Consequently, several research recommendations are presented, which would strengthen confidence in quantifying threshold values for use in risk assessment and management. These recommendations include a need for high quality toxicity tests, and for an improved understanding of the mechanisms of action to better establish links to ecologically relevant adverse effects. 
    more » « less