skip to main content

Search for: All records

Creators/Authors contains: "Albert, Helena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Deception Island is one of the most active volcanoes in Antarctica with more than twenty explosive eruptions in the past two centuries. Any future volcanic eruption(s) is a serious concern for scientists and tourists, will be detrimental to marine ecosystems and could have an impact to global oceanographic processes. Currently, it is not possible to carry-out low and high frequency volcanic gas monitoring at Deception Island because of the arduous climatic conditions and its remote location. Helium, neon and argon isotopes measured in olivine samples of the main eruptive events (pre-, syn- and post caldera) offer insights into the processes governing its volcanic history. Our results show that: (i) ascending primitive magmas outgassed volatiles with a MORB-like helium isotopic signature ( 3 He/ 4 He ratio); and (ii) variations in the He isotope ratio, as well as intensive degassing evidenced by fractionated 4 He/ 40 Ar * values, occurred before the beginning of the main eruptive episodes. Our results show how the pre-eruptive noble gas signals of volcanic activity is an important step toward a better understanding of the magmatic dynamics and has the potential to improve eruption forecasting.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract

    The processes and ranges of intensive variables that control magma transport and dyke propagation through the crust are poorly understood. Here we show that textural and compositional data of olivine crystals (Mg/Fe, Ni and P) from the tephra of the first months of Paricutin volcano monogenetic eruption (Mexico, 1943–1952) record fast growth and large temperature and oxygen fugacity gradients. We interpret that these gradients are due to convective magma transport in a propagating dyke to the Earth’s surface in less than a few days. The shortest time we have obtained is 0.1 day, and more than 50% of the calculated timescales are < 2 days for the earliest erupted tephra, which implies magma ascent rates of about 0.1 and 1 m s−1. The olivine zoning patterns change with the eruptive stratigraphy, and record a transition towards a more steady magma flow before the transition from explosive to effusive dynamics. Our results can inform numerical and experimental analogue models of dyke propagation, and thus facilitate a better understanding of the seismicity and other precursors of dyke-fed eruptions.