Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The cluster environment has been shown to affect the molecular gas content of cluster members, yet a complete understanding of this often subtle effect has been hindered due to a lack of detections over the full parameter space of galaxy star formation rates (SFRs) and stellar masses. Here, we stack CO(2–1) spectra ofz ∼ 1.6 cluster galaxies to explore the average molecular gas fractions of galaxies both at lower mass (log(M*/M⊙) ∼ 9.6) and further below the star-forming main sequence (SFMS; ΔMS ∼ −0.9) than other literature studies; this translates to a 3σgas mass limit of ∼7 × 109M⊙for stacked galaxies below the SFMS. We divide our sample of 54z ∼ 1.6 cluster galaxies, derived from the Spitzer Adaptation of the Red-Sequence Cluster Survey, into nine groupings, for which we recover detections in 8. The average gas content of the full cluster galaxy population is similar to coeval field galaxies matched in stellar mass and SFR. However, when further split by CO-undetected and CO-detected, we find that galaxies below the SFMS have statistically different gas fractions from the field scaling relations, spanning deficiencies to enhancements from 2σbelow to 3σabove the expected field gas fractions, respectively. These differences betweenz= 1.6 cluster and field galaxies below the SFMS are likely due to environmental processes, though further investigation of spatially resolved properties and more robust field scaling relation calibration in this parameter space are required.more » « lessFree, publicly-accessible full text available May 23, 2026
-
Abstract The evolution of galaxies depends on their masses and local environments; understanding when and how environmental quenching starts to operate remains a challenge. Furthermore, studies of the high-redshift regime have been limited to massive cluster members, owing to sensitivity limits or small fields of view when the sensitivity is sufficient, intrinsically biasing the picture of cluster evolution. In this work, we use stacking to investigate the average star formation history of more than 10,000 groups and clusters drawn from the Massive and Distant Clusters of WISE Survey 2. Our analysis covers near-ultraviolet to far-infrared wavelengths, for galaxy overdensities at 0.5 ≲z≲ 2.54. We employ spectral energy distribution fitting to measure the specific star formation rates (sSFRs) in four annular apertures with radii between 0 and 1000 kpc. Atz≳ 1.6, the average sSFR evolves similarly to the field in both the core and the cluster outskirts. Between and , the sSFR in the core drops sharply, and it continues to fall relative to the field sSFR at lower redshifts. We interpret this change as evidence that the impact of environmental quenching dramatically increases atz∼ 1.5, with the short time span of the transition suggesting that the environmental quenching mechanism dominant at this redshift operates on a rapid timescale. We find indications that the sSFR may decrease with increasing host halo mass, but lower-scatter mass tracers than the signal-to-noise ratio are needed to confirm this relationship.more » « less
An official website of the United States government
